

CMOS-Logik Grundschaltungen

Kapitel 9: Digitaltechnik 2

- CMOS Grundschaltungen
 - NOT
 - NAND
 - AND
 - NOR

 - **EXOR**
 - **EXNOR**
- Laufzeiteffekte

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

9.1

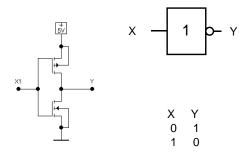
N-Kanal-MOS-FET und P-Kanal-MOS-FET

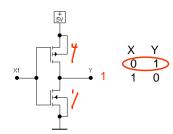
Transistoren bilden die Grundlage für die Realisierung der CMOS-Logikfunktionen.

Dr.-Ing. Achim Liers,

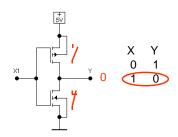
FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11


9.2

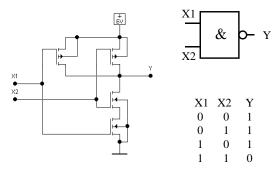

CMOS-Logik NOT

CMOS-Logik NOT



9.4

CMOS-Logik NAND

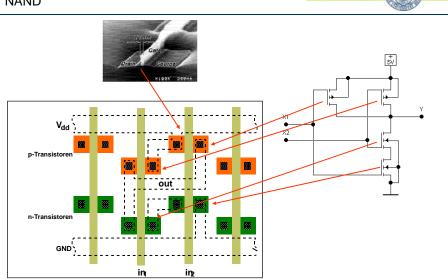


Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

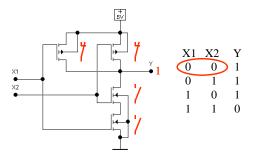
9.5

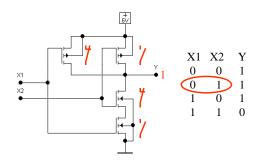
Dr.-Ing. Achim Liers,


FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

9.6


CMOS-Logik NAND



CMOS-Logik NAND

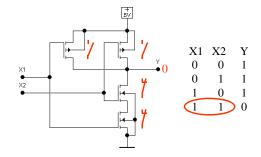
Dr.-Ing. Achim Liers, FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

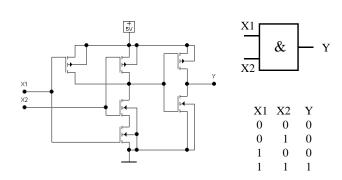
Dr.-Ing. Achim Liers,

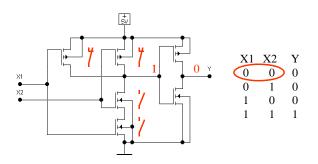
FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

9.10


CMOS-Logik NAND




9.9

CMOS-Logik AND

X1 X2 Y

Dr.-Ing. Achim Liers,

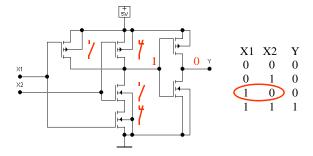
FU Berlin liers@inf.fu-berlin.de

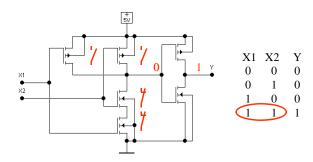
Technische Informatik I, WS10/11

9.13

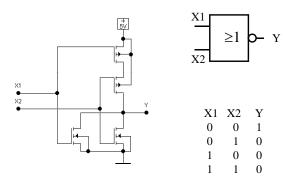
Dr.-Ing. Achim Liers, FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11


9.14


CMOS-Logik AND

CMOS-Logik AND



CMOS-Logik NOR

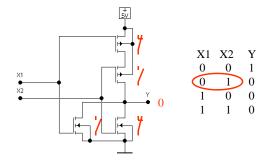
Dr.-Ing. Achim Liers,

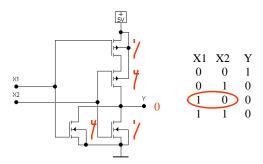
FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

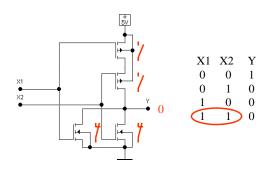
9.17

Dr.-Ing. Achim Liers, FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11


9.18


CMOS-Logik NOR



CMOS-Logik NOR

≥1

Dr.-Ing. Achim Liers,

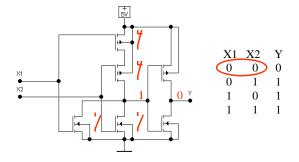
FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

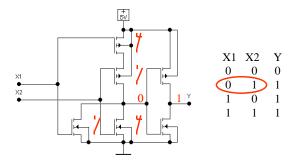
9.21

Dr.-Ing. Achim Liers,

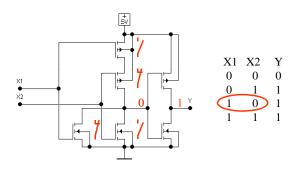
FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11


9.22


CMOS-Logik

CMOS-Logik



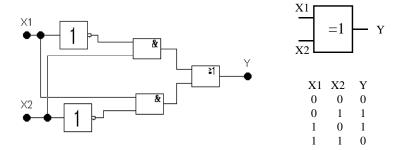
CMOS-Logik OR

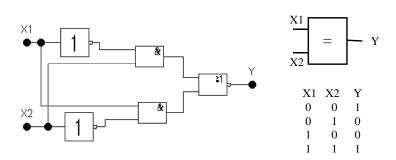
Dr.-Ing. Achim Liers, FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

X1 X2 Y
0 0 0 0
0 1 1
1 0 1
1 1 1

Dr.-Ing. Achim Liers, FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

9.26


CMOS-Logik EXOR



9.25

erlin CMOS-Logik EXNOR

CMOS-Familie

1-le	itet	INV				
0-gesp	errt		· * 	•.		
A	<u>I</u>		$\begin{bmatrix} & & & & & & & & & & & & & & & & & & &$	The state of the s	+5V	В
•					0V	•••••
	ļ					U _{AB}
	-					
	U_{AB}					

Dr.-Ing. Achim Liers,

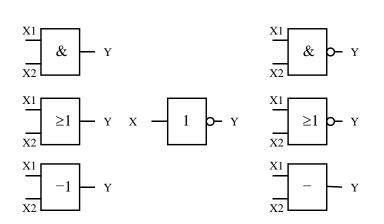
FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

9.29

CMOS Logik	CD4000
	MC14
Standart CMOS-Reihe	74C
Advanced CMOS-Reihe	74AC
Advanced CMOS-Reihe TTL-komp.	74ACT
High-Speed CMOS-Reihe	74HC
Low-Voltage High-Speed	74LV-HC
High-Speed CMOS-Reihe TTL-komp.	74HCT

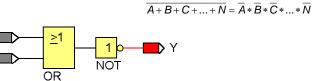
Dr.-Ing. Achim Liers,

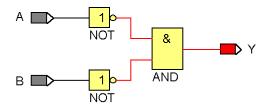

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

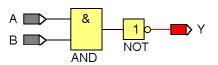
9.30

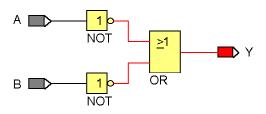
Logikgrundbausteine




Logikgrundbausteine Übergang OR in AND

De Morgan $\overline{A*B*C*...*N} = \overline{A} + \overline{B} + \overline{C} + ... + \overline{N}$


 $\overline{A+B} = \overline{A} \cdot \overline{B}$


9.31

De Morgan $\overline{A*B*C*...*N} = \overline{A} + \overline{B} + \overline{C} + ... + \overline{N}$ $\overline{A+B+C+...+N} = \overline{A}*\overline{B}*\overline{C}*...*\overline{N}$

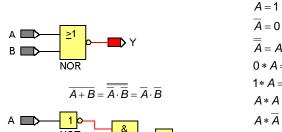
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Dr.-Ing. Achim Liers.

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

FU Berlin liers@inf.fu-berlin.de


Technische Informatik I. WS10/11

9.33

Logikgrundbausteine Übergang NOR in NAND

De Morgan $\overline{A*B*C*...*N} = \overline{A} + \overline{B} + \overline{C} + ... + \overline{N}$ $\overline{A+B+C+...+N} = \overline{A}*\overline{B}*\overline{C}*...*\overline{N}$

A = A0 * A = 0

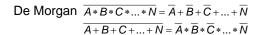
1 * A = AA * A = A

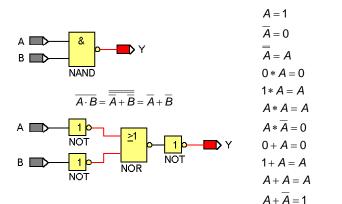
 $A*\overline{A}=0$ 0 + A = 0

> 1 + A = AA + A = A

 $A + \overline{A} = 1$

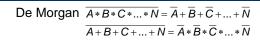
Dr.-Ing. Achim Liers.

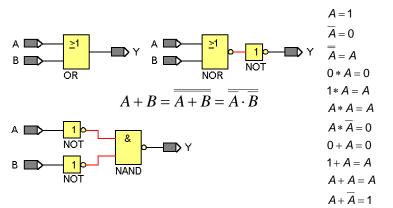

FU Berlin liers@inf.fu-berlin.de


Technische Informatik I. WS10/11

9.34

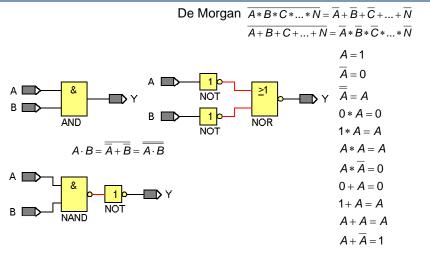
Logikgrundbausteine Übergang NAND in NOR





Technische Informatik I, WS10/11

Übergang OR in NOR in NAND



Übergang AND in NOR in NAND

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.37

Funktionsgruppen der Logikfamilien

- ➤ Logikgrundgatter
- ➤ Logikgrundgatter mit Schmitt-Trigger Eingang
- ➤ Multiplexer / Demultiplexer
- > Register / Zwischenspeicher
- ➤ Schieberegister
- ➤Zähler / Frequenzteiler
- ➤ Monovibratoren
- ➤ Arithmetische Funktionen
- ➤ Codierer / Decodierer
- > Fehlererkennung
- ➤ Speicher / Speichersteuerung
- ➤ Bustreiber / Puffer

Dr.-Ing. Achim Liers,

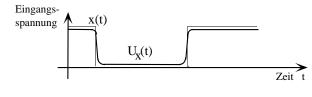
Dr.-Ing. Achim Liers,

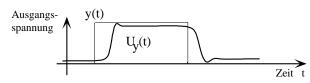
FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

9.38

Laufzeiteffekte


- Auf der Gatterebene wurden die Gatter bisher als ideale logische Verknüpfungen betrachtet.
- In der Realität werden Gatter jedoch mittels Transistoren, Widerstände, Kapazitäten, etc. realisiert.
- Der zeitliche Signal-Verlauf eines realen Gatters weicht vom Verlauf der idealen booleschen Größen ab.


Realer und idealer Signalverlauf (Inverter)

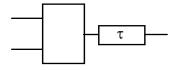
FU Berlin liers@inf.fu-berlin.de

Realistischere Beschreibung von Gattern

- Um die Effekte auf der Gatterebene annähernd zu beschreiben, gibt es eine Reihe verschieden komplexer Modelle.
- Einfachstes Modell: Totzeitmodell
 - Es werden lediglich die durch Gatter und Leitungen entstehenden Totzeiten berücksichtigt.

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de


Technische Informatik I. WS10/11

9.41

Das Totzeitmodell

- Beim Totzeitmodell wird ein reales Verküpfungsglied (Gatter) modelliert durch:
- Ein ideales Verknüpfungsglied ohne Verzögerungsanteil und
- ein Totzeitglied als reines Verzögerungsglied (steht für die Schaltzeit des Gatters und ggf. für Leitungsverzögerungen).

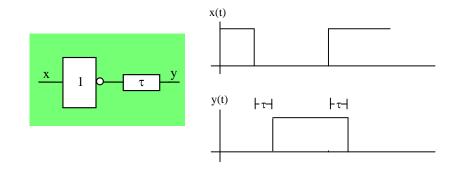
Dr.-Ing. Achim Liers.

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

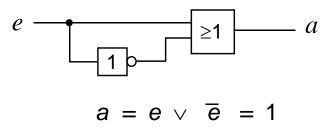
9.42

Totzeitglied


• Das zeitliche Verhalten einer binären Größe hinter einem Totzeitglied ist dasselbe wie dasjenige vor dem Totzeitglied, aber um die Zeit τ versetzt.

Beispiel: Totzeitmodell eines Inverters

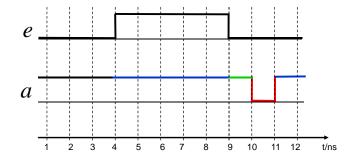
 Mit Hilfe dieses einfachen Modells lassen sich Laufzeiteffekte bereits sehr gut modellieren (auch wenn dieses Modell noch sehr idealisierend ist!).


Beispiel: Inverteranwendung

Zeit-Diagramm

Gegeben:

Beide Gatter haben eine Verzögerungszeit von 1 ns


Dr.-Ing. Achim Liers.

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

9.45

 $e \xrightarrow{011000} \ge 1 \xrightarrow{\tau} \frac{111101}{\tau} a$

Dr.-Ing. Achim Liers.

FU Berlin liers@inf.fu-berlin.de

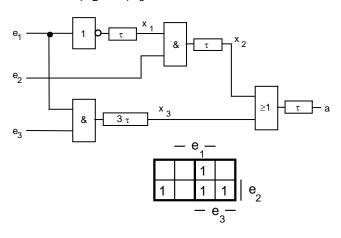
Technische Informatik I. WS10/11

9.46

Verhalten eines Schaltnetzes bei Änderung der Eingabebelegung 1

- Ideales Schaltnetz:
- Das Ausgangssignal ändert sich nicht, wenn alte und neue Belegung denselben logischen Verknüpfungswert liefern.
- Das Ausgangssignal ändert sich genau einmal, wenn alte und neue Belegung verschiedene logische Verknüpfungswerte liefern.

Verhalten eines Schaltnetzes bei Änderung der Eingabebelegung 2



- Reales Schaltnetz:
- Die Änderung läuft auf verschieden langen Wegen mit verschiedenen Verzögerungen durch das Schaltnetz.
- Mehrfache Änderungen des Ausgangssignals sind möglich, bis sich der stabile Endwert einstellt
- Hasardfehler

Dr.-Ing. Achim Liers,

Funktion: $a = \overline{e}_1 e_2 \vee e_1 e_3$

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.49

Eingabewechsel

- Es sollen die folgenden Eingabewechsel betrachtet werden:
- a) Die Eingänge e₂ und e₃ seien konstant 1, der Eingang e₁ wechsle von 0 auf 1
- b) Die Eingänge e₂ und e₃ seien konstant 1, der Eingang e₁ wechsle von 1 auf 0

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

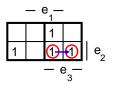
Technische Informatik I. WS10/11

Technische Informatik I, WS10/11

9.50

Berlin

Funktion: $a = \overline{e}_1 e_2 \lor e_1 e_3$

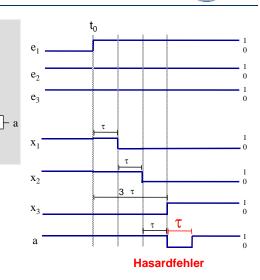


Funktionswerte bei den Übergängen:

$$(e_3, e_2, e_1) = (1,1,0)$$
 \Rightarrow $a = 0$

$$(e_3,e_2,e_1) = (1,1,1)$$

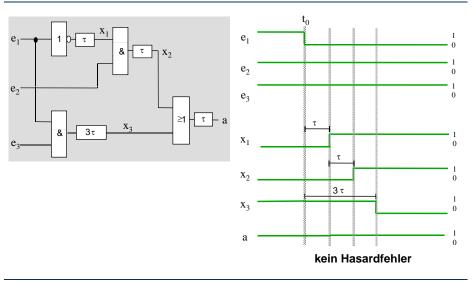
$$\Rightarrow$$
 a = 1



 \Rightarrow korrektes Verhalten bei den Übergängen.

Bei beiden Übergängen darf sich der Wert von a nicht ändern. Er muss konstant 1 bleiben.

Genau dieses Verhalten kann jedoch nicht garantiert werden!


Das Verhalten anhand des Totzeitmodells

Freie Universität

Das Verhalten anhand des Totzeitmodells

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I, WS10/11

9.53

Ergebnis

- Beim Wechsel e₁ von 0 auf 1 liefert das Ausgangssignal nicht ständig den korrekten Funktionswert
- + Hasardfehler
- Beim Wechsel e₁ von 1 auf 0 ist das Ausgangssignal hingegen korrekt

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.54

Begriffe: Eingabewechsel, Übergang

- Definition:
- Ein Eingabewechsel ist die Änderung einer oder mehrerer Eingangsvariablen zu einem bestimmten Zeitpunkt.
 - Falls sich mehrere Eingangsvariablen ändern sollen, so müssen sie dies gleichzeitig tun.
- Definition:
- Ein Übergang ist der Vorgang im Schaltnetz, der vom Eingabewechsel ausgelöst wird. Er beginnt mit dem Eingabewechsel und endet mit dem Eintreten des neuen Ruhezustandes.

Begriffe: Hasardfehler - Hasard

- Definition:
- Ein Hasardfehler ist eine mehrmalige Änderung der Ausgangsvariablen während eines Übergangs.
- Definition:

Dr.-Ing. Achim Liers,

 Ein Hasard ist die durch das Schaltnetz gegebene logisch-strukturelle Vorbedingung für einen Hasardfehler, ohne Berücksichtigung der konkreten Verzögerungswerte.

Hasardbehaftete Übergänge 1

- Jeder Hasard ist eine Eigenschaft eines bestimmten Überganges im Schaltnetz.
- Zur Betrachtung, ob ein bestimmter Übergang hasardbehaftet ist oder nicht, interessiert nur:
 - · Die logische Funktion, die durch das Schaltnetz realisiert wird.
 - Die Struktur des Schaltnetzes, d.h. die Anzahl, die Verknüpfungsfunktionen und die genaue Anordnung der Gatter zur Realisierung der Funktion, nicht jedoch die tatsächlichen Verzögerungswerte der verwendeten Gatter.

Dr.-Ing. Achim Liers,

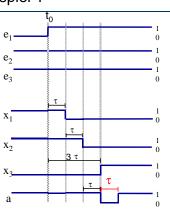
FU Berlin liers@inf.fu-berlin.de

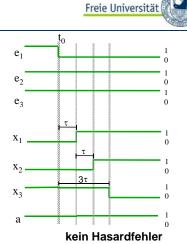
Technische Informatik I. WS10/11

9.57

Hasardbehaftete Übergänge 2

- Tritt in einem konkreten Schaltnetz bei einem bestimmten Übergang ein Hasardfehler auf, so ist dieser Übergang hasardbehaftet, also:
- Hasardfehler → Hasard
- Die Umkehrung gilt jedoch nicht: Ist ein Übergang hasardbehaftet, so folgt hieraus nicht notwendigerweise das Eintreten eines Hasardfehlers.
- Hasard ∧ ungünstige Verzögerungswerte → Hasardfehler

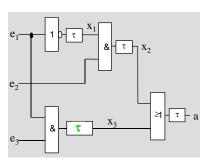

Dr.-Ing. Achim Liers.

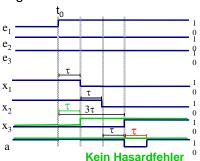

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.58

Beispiel 1




Der Übergang $(e_3,e_2,e_1):(1,1,0)\to(1,1,1)$ ist hasardbehaftet, da es die Möglichkeit zu einem Hasardfehler gibt.

Beispiel 2

Ändert man nun die Totzeit mit dem Wert 3τ auf den Wert τ ab, so entsteht für den Übergang $(1,1,0) \to (1,1,1)$ kein Hasardfehler mehr. Der Übergang ist jedoch nach wie vor hasardbehaftet, da für den Hasard konkrete Verzögerungswerte nicht interessieren.

9.59

Hasardfehler

Statischer Übergang

- Statischer Übergang:
- Ein Übergang, bei dem Anfangs- und Endwert des Ausgangssignals gleich sind (unabhängig davon, ob ein Hasardfehler eintritt oder nicht).
- Statischer 0-Übergang:
 Anfangs- und Endwert des Ausgangssignal sind beide 0
- Statischer 1-Übergang:
 Anfangs- und Endwert des Ausgangssignal sind beide 1

Dr.-Ing. Achim Liers.

FU Berlin liers@inf.fu-berlin.de

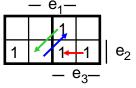
Technische Informatik I. WS10/11

9.61

Dynamischer Übergang

- Dynamischer Übergang:
- Ein Übergang, bei dem Anfangs- und Endwert des Ausgangssignals verschieden sind
- Dynamischen 01-Übergang:
 Anfangswert des Ausgangssignals 0, der Endwert 1
- Dynamischen 10-Übergang:
 Anfangswert des Ausgangssignals 1, der Endwert 0

Dr.-Ing. Achim Liers.


FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.62

Beispiel

Statischer 1-Übergang:

Übergang (e_3, e_2, e_1) : $(1,1,0) \rightarrow (1,1,1)$

Dynamischer 01-Übergang:

Übergang (e_3, e_2, e_1) : $(0,1,1) \rightarrow (1,0,1)$

Dynamischer 10-Übergang

Übergang in umgekehrter Richtung: $(1,0,1) \rightarrow (0,1,1)$

Statischer 0-Hasard

- Analog zu den Übergängen werden die Hasards als statisch bzw. dynamisch bezeichnet, je nachdem, bei welcher Art von Übergang sie auftreten.
- •

Dr.-Ing. Achim Liers,

• Ein Hasard in einem statischen 0-Übergang heißt statischer 0-Hasard.


Beispiele für statische 0-Hasardfehler:

FU Berlin liers@inf.fu-berlin.de

Statischer 1-Hasard

- Ein Hasard in einem statischen 1-Übergang heißt statischer 1-Hasard.
- Beispiele für statische 1-Hasardfehler:

Der Übergang $(1,1,0) \rightarrow (1,1,1)$ im Beispiel enthält also einen statischen 1-Hasard.

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de Technische Informatik I. WS10/11

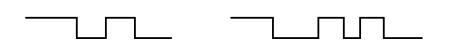
9.65

Dynamischer 01-Hasard

- Ein Hasard in einem dynamischen 01-Übergang heißt dynamischer 01-
- Beispiele für dynamische 01-Hasardfehler:

Dr.-Ing. Achim Liers.

FU Berlin liers@inf.fu-berlin.de Technische Informatik I. WS10/11


Technische Informatik I, WS10/11

9.66

Dynamischer 10-Hasard

- Ein Hasard in einem dynamischen 10-Übergang heißt dynamischer 10-
- Beispiele für dynamische 10-Hasardfehler:

Klassifizierung von Hasards

Funktionshasard - Strukturhasard

- Weitere Unterscheidung von Hasards nach ihrer Ursache: Funktionshasards und Strukturhasards.
- Bei einem Funktionshasard liegt die Ursache in der zu realisierenden Funktion selbst.
- Bei einem Strukturhasard dagegen liegt die Ursache in der Struktur des realisierten Schaltnetzes, je nachdem welche Verknüpfungsfunktionen verwendet werden und wie sie angeordnet sind.

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.69

Funktionshasard

- Definition:
- Ein Funktionshasard ist ein Hasard, dessen Ursache in der zu realisierenden Funktion liegt.
- Er tritt in jedem möglichen Schaltnetz für diese Funktion auf. Er kann nicht behoben werden.

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de

Technische Informatik I. WS10/11

9.70

Strukturhasard

- Definition:
- Ein Strukturhasard ist ein Hasard, dessen Ursache in der Struktur des realisierten Schaltnetzes liegt.
- Ein Strukturhasard kann deshalb immer durch Änderung der Schaltnetzstruktur bei gleicher Schaltnetzfunktion behoben werden.
- ⇒ Es ist grundsätzlich möglich, ein anderes Schaltnetz zu entwerfen, welches dieselbe Funktion realisiert und den Strukturhasard beseitigt.

Klassifizierung von Laufzeiteffekten

benötigt man Zum Erkennen von	Funktion des Schaltnetzes	Struktur des Schaltnetzes (daher auch Funktion)	konkrete Verzögerungen der Gatter zur gegebenen Struktur des Schaltnetzes
Funktions- hasards			
Struktur- hasards			
Funktions- hasardfehler			
Struktur- hasardfehler			

Die dunkelgrauen Felder markieren die notwendigen Informationen Die hellgrauen Felder markieren die daraus folgenden Informationen

Anwendungsbereites Wissen

- Realisierung in CMOS-Technik von
 - NOT
 - NAND
 - AND
 - NOR
 - OR
 - EXOR
 - EXNOR
 - Übergänge
 - OR <-> AND
 - NOR <-> NAND
 - AND <-> NAND
- Laufzeitverhalten, Hasards
- Klassifizierung von Laufzeiteffekten

Dr.-Ing. Achim Liers,

FU Berlin liers@inf.fu-berlin.de Technische Informatik I, WS10/11

9.73