
1

11 11 ModellingModelling Transaction correctnessTransaction correctness

11.1 Why transactions?
11.2 Modeling transactions: histories and schedules

Correctness criteria
Serial execution

History
11.3 Serializability

Conflict graph
Serializability theorem

Kemper / Eickler chap 11.1-11.5, Elmasri/Navathe chap. 19

11-TA-2

11.1 11.1 WhyWhy transactionstransactions? ?

Transactional program:
BEGIN
op1; op2;;opn; //internal op or SELECT, UPDATE,
COMMIT //INSERT, DELETE on database

– System must guarantee "correct execution"
– DBS has to be a "dependable (fault tolerant, reliable)

system"

Transaction: a unit of work which consists of a
sequence of steps (operations on the Database)

Remember...

11-TA-3

ACIDACID

Why is there a problem at all??

• Concurrent execution of multiple transactions (TA):
Execution of ops belonging to different TAs may be
interleaved. (Why?)

• TA may be aborted

• Systems may crash

Important: ACID paradigm.

A Database System should......

11-TA-4

Transaction semanticsTransaction semantics

... guarantee certain execution l properties

"All or nothing" semantics
All effects are made permanent at COMMIT, not before .

TA has no effect after ROLLBACK
"Now and forever"

DBS guarantees the effects after COMMIT has
been processed successfully

"Solve concurrency conflicts"
Conflict resolution of concurrent operations on DB

"Keep consistent DB consistent"
Preservation of integrity

ATOMICITY

DURABILITY

ISOLATION

CONSISTENCY

Focus

11-TA-5

COMMIT processingCOMMIT processing

• The COMMIT command is issued by the application

• The database server will either return control to the caller
after successful processing the commit or throw an
exception, if the TA cannot be committed for some reason

• If committed, the effects of TA can only be reversed by
a compensating transaction.

try {
stmt.executeUpdate(sql1);
stmt.executeUpdate(sql2);
// Wenn keine Fehler aufgetreten sind,
// Änderungen festschreiben
con.commit();

} catch(SQLException e) { ...}

11-TA-6

ExampleExample

SELECT balance INTO :myVar
FROM account
WHERE acc# = :myAcc;
If myVar + dispo – amount >=0
UPDATE account SET

balance = myVar – amount
WHERE acc# = :myAcc;

Call ATM_pay_out;
ENDIF;
COMMIT;

…
SELECT SUM(balance),owner

FROM account
GROUP BY owner;
COMMIT;
DBS_OUTPUT.PutLine(…);

concurrent execution in independent DB sessions
Conflict? Not a big deal in this case,
but may be SUM is incorrect.

2

11-TA-7

Focus: IsolationFocus: Isolation
Worst case: lost update

T1:
2 progVar ← read(x);

4 progVar++;
5 write (x ← progVar)

T2:
1 progVar ← read(x);

3 progVar++;

6 write (x ← progVar)

Read of T1 and T2: x==7; Increment by T1: x== 8,
Increment by T2: x==8

Concurrent Execution
t

11-TA-8

Potential threats Potential threats

Lost update: Independent updaters change
the same object.
One of the updates has no effect.

Every serious DBS has technical means to prevent
a lost update.

11-TA-9

Isolation levelsIsolation levels

How much isolation does a TA need?

Application dependent:
Is it acceptable that browsing in an online shop
does not show the correct price of a few products?

The more isolation the less parallelism

Isolation level: Defines the degree of data corruption a
program is willing to accept.

11-TA-12

Isolation Isolation levelslevels

REPEATABLE READ
• all read / write conflicts prevented, reads repeatable

SERIALIZABLE
• repeatable read and no phantoms

TA2 : r(a), x= a............... r(a);r(b),x:=x+b,...
TA1 : Insert(z); Commit;

-- TA2: SUM of some attribut of relation S,
-- TA1: inserts a row into S

11-TA-13

Isolation levelsIsolation levels

• Read uncommitted dangerous: may cause inconsistencies

• Read committed is the default in most systems (e.g. Oracle)

• Serializable important for high frequent short transactions
with many potential conflicts.

• AUTOCOMMIT-mode: implicit COMMIT after each SQL-
statement

11-TA-15

TA abortTA abort

ABORT

Caused by system, kills transaction
– system failure user session is aborted system

recovery
– transaction rollback caused by internal state

(e.g. deadlock)
Recovery of TA by system, of application process
control flow by programmer.
Important: handling of DB exceptions

3

11-TA-17

SAVEPOINTSSAVEPOINTS

Rollback can be expensive in long TAs
Use SAVEPOINTs to limit work to be redone

TA begin SAVEPOINT s

operations on DB more operations on DB

UNDO everything
after s

commit 'safe'
operations

UPDATE Movie SET title = 'bla'
where year < where year < to_date (2000,'YYYY')

savepoint first;
UPDATE DVD SET
IF ... ROLLBACK TO SAVEPOINT first

11-TA-18

11.2 Correctness criteria for synchronization11.2 Correctness criteria for synchronization

The issue
– Transaction steps on a database are

executed concurrently opi,...,opj, ..,opk (i.e. SQL calls)
– No way to forecast which step comes next

(process scheduling).
– But certain sequences are forbidden because they

violate the intended isolation level

The goal
– A scheduling method which prevents operation

sequences which potentially violate isolation

11-TA-19

DBS SchedulerDBS Scheduler

DB_op1
…
DB_opn

DB_op1
…
DB_opn

DB_op1
…
DB_opn

…

Some 'legal' sequence of
operations on DB

What does 'legal' mean?

DB_opn
DB_op1
…
DB_opn
DB_op1
DB_op1

…

DBS
scheduler

Clients

To be executed by
data manager - in
this sequence

System point of view

11-TA-20

Scheduling and Concurrency controlScheduling and Concurrency control

Basic questions:

(i) When is a sequence correct of steps of different
transactions correct in the that it does not violate
an isolation level (correctness criteria)

(ii) Which mechanisms do we have in order to enforce
a (correct or legal) sequence?

11-TA-21

ModelingModeling TAsTAs

Read/Write model:
Transaction: sequence of following atomic DB-operations

– Operations of different TAs interleaved
⇒ Sequence of r / w steps of different transactions.

– Assumption for now: no abort, since aborted TA
do not leave any effect in DB

READ i [x] - TA i reads Object x: ri[x]
WRITE i [y] - TA i writes Object x: wi[x],

DB state change
Commit i - TA i terminates successfully: ci

A transaction is modelled as a sequence of reads
and writes:

TA j = rj(x), rj(y), wj(y), rj(z), wj(x), wj(s) , wj(z) , cj

cj : "successful commit ",

TheThe ModelModel

Consistency conventions (only for model):

TA do not read or write the same item twice

Scheduler produces a sequence of steps for many
competing transactions...

4

11-TA-23

Histories and schedulesHistories and schedules

Def.: A history S of a (finite) set of transactions T
is a sequence <op> of atomic actions op if the following
conditions hold:

(1) An atomic action of a TA ∈ T occurs exactly once in S
(2) No other action occurs in S
(3) If op < op' in some TA, then op < op' in S

"<" is the canonical ordering induced by the sequence of
operations in TA and S rsp. (*)

Def.: A schedule is a prefix of S.

e.g. r1[x], r2[y], r2[z], w2[y], r2[x], r1[y], w2[x], w1[y], r1[z], r2[s], c2, w1[x], c1

(*) Partial order of steps would be ok, but formally more involved 11-TA-24

CorrectnessCorrectness of transaction of transaction executionexecution

Informal correctness criterion

Execution of a set of TA is intuitively correct, if they are
executed one after the other – in an arbitrary order.

Def.: Such an order is called a serial execution.

e.g. r1[x], r2[y], r2[z], w2[y], r2[x], r1[y], w2[x], w1[y], r1[z], r2[s], c2, w1[x], c1

r2[y], r2[z], w2[y], r2[x],, w2[x], r2[s], c2 r1[x], r1[y],w1[y], r1[z],, w1[x], c1
r1[x], r1[y]w1[y], r1[z],, w1[x], c1, r2[y], r2[z], w2[y], r2[x],, w2[x], r2[s], c2

i.e. T1, T2 or T2,T1

11-TA-25

Correctness of historiesCorrectness of histories

Informal correctness criterion makes sense:

- no isolation conflicts

- order of TAs is determined by applications

Task:
Characterize the interleaved histories;

correct or not correct?

11-TA-26

11.3 Serializability11.3 Serializability

- more than one possible serialization
- needed: a simple criterion based on steps of transactions
- Conflicting operations between transactions?

Def.: Given a history (schedule) H of transactions
TA = {t1,...tn}.
If an execution of H produces the same database state
as some serial execution of T, H is called serializable

11-TA-27

Informal serializabilityInformal serializability

r1[x=1], r2[y=5], w2[y=y+2], r1[z=3], w1[x=x+z], r2[z], c2, r1[y=7],w1[y=2*y], c1

x==4, y==14, z as beforex==1, y==5, z ==3

History H

r1[x=1], r1[z=3], w1[x=x+z], r1[y=5],w1[y=2*y], c1, r2[y=14], w2[y=y+2], r2[z], c2,

x==4, y==12, z as beforex==1, y==5, z ==3

T1,T2

r2[y=5], w2[y=y+2], r2[z], c2, r1[x=1], r1[z=3], w1[x=x+z],, r1[y=7],w1[y=2*y], c1

x==4, y==14, z as beforex==1, y==5, z ==3

T2,T1

H serializable! 11-TA-28

Serial executionSerial execution

History H':

r1[x=1],r2[x=1],w2[x++], w1[x++], c2, c1

x==2 x==1

T2, T1

T1, T2

H' not serializable!
⇒ x=3

⇒ x=3
⇒

Wanted: a less cumbersome criterion for serializability

5

11-TA-29

ConflictConflict operationsoperations

Conflict serializability

Example
H: r1[x], r2[y], w1[x], w1[y], w2[y]

Conflict pairs

Def.: Conflict operations:
opi (x) and opj(y) conflict
⇔ i ≠ j and x = y and opi = w or opj = w

i.e. - no conflicts between reads,
- conflict if writes on the same

object s by different transactions

11-TA-30

Serializability: intuitive ideaSerializability: intuitive idea

Interchange operations in a schedule in order to achieve an
equivalent serial schedule.

Non-conflicting operations of different TAs may be inter-
changed

no interchange of conflicting operations

..... r2[x], r1[x], w2[x] ... → r1[x], r2[x], w2[x] ...

But: r1[x], r2[x], w2[x], w1[x], →..... r1[x], w1[x], r2[x], w2[x],.....

not allowed, TA2 reads stale data.

11-TA-31

Conflicting operationsConflicting operations

Semantic difference if x is read before or after it has been
changed by a different transaction !

.... r1[y], r2[x], w2[x], r1[x], →.... r2[x], w2[x], r1[y], r1[x],

But: .. r1[y], r2[x], w2[x], r1[x], →.... r1[y], r2[x], r1[x] w2[x],

not allowed.: ... w1[z=f(x,y)] : different effects

ConflictConflict relationrelation

Example:
TA 1 = r1[x], r1[y], w1[y], r1[t], w1[x], c1
TA 2 = r2[y], r2[z], w2[z], r2[x], w2[x], r2[s], c2

C(S) = {(r2[y], w1[y]), (r1[x],w2[x]) (w1[x], w2[x]), (r2[x], w1[x])}

Def.: Conflict relation of a schedule (history) S:
C(S) = {(op,op') | op and op' are conflicting and op < op' in S}

r2[y], r1[x], r1[y], w1[y], r2[z,] w2[z], r2[x], r1[t], w1[x], c1,w2[x], r2[s], c2

11-TA-33

Equivalent schedulesEquivalent schedules

Conflict equivalence

Def.: Two histories H, H' are conflict equivalent
⇔ C(H) = C(H'),

i.e. they have the same conflict relation.

H = r2[y], r1[x], r1[y], w1[y], r2[z,] w2[z], r2[x], r1[t], w1[x], c1,w2[x], r2[s], c2

H' = r1[x], r1[y], r2[y], w1[y] r2[z,] w2[z] , r1[t] r2[x], w1[x], c1,w2[x], r2[s], c2

C(H) = {(r2[y], w1[y]), (r1[x],w2[x]) (w1[x], w2[x]), (r2[x], w1[x])} = CS(H')

11-TA-34

Conflict Conflict SerializableSerializable

Def.: A history S of a transaction set T is conflict
serializable (CS) (*),
if it has the conflict equivalent to some
serial execution SER of T: C(S) = C(SER)

Note: if S is CS then not every serial execution has the
same effects on the data, but there exists one which leaves
the database in the same state, i.e. has the same effects !

(*) Sometimes we say just: serializable, although there is the less restrictive
notion of "view serializable"

6

11-TA-35

SerializabilitySerializability

Example

S: r1[x], r2[x], r1[y], r2[z], w2[y], w2[x], w1[y], r1[z], c2, w1[x], c1

C(S) =
{ (r1[x], w2[x]), (r2[x], w1[x]), (r1[y], w2[y]) (w2[y], w1[y]), (w2[x], w1[x]) }

T1 must occur before T2 (r1[x], w2[x]) in a serial schedule
...and T2 must occur before T1: (r2[x], w1[x])

NOT
conflict
serializable

11-TA-36

SerializabilitySerializability

Conflict Graph (Precedence | dependency graph)

Def.: Conflict graph:
(a) Nodes: Transactions {T1, ….Tn}
(b) Directed Edges E :

(Tj,Tk) ∈ E :⇔
exists a conflicting pair (opj [x] , op'k [x])

What does a cycle in this graph mean?

Represents the conflict relation of the transactions.

11-TA-37

Conflict graph and serializabilityConflict graph and serializability

Conflict graph CG(S)
.
How does the conflict graph of a serializable schedule

look like?

Serializability theorem:
A history S is conflict serializable, if and only if
its conflict graph does not contain a cycle

11-TA-38

SerializabilitySerializability

Example:
S: r1[y], r3[u], r2[y], w1[y], w2[x], w1[x], w2[z], w3[x]

T1

T2
T3

Serializable!

Correctness of serializability theorem?

11-TA-39

SerializabilitySerializability

Proof of Serializability Theorem:
" ⇐" "
show: no cycle ⇒ serializable"

The nodes of a connected directed graph without cycles
can be sorted topologically: a < b iff there is a path from
a to b in the graph. Results in a serial schedule TAi,
.......TAk .

T1

T2
T3

Not unambigous in general.

11-TA-40

SerializabilitySerializability

" ⇒ " "Serializable ⇒ no cycle"
Suppose there is a cycle TA i -> TA j of length 2 in
CG(S) .
Then there are conflicting pairs (p,q) and (q',p'),
p,p' from TA i, q,q' from TA j. No serial schedule will
contain both (p,q) and (q',p').

Induction over length of cycle proves the "only if"
Induction: cycle of length n, then 2 TA may be "joined".

⇒ cycle of length n

7

11-TA-42

A word of caution ...A word of caution ...
• Serializability formal is a correctness criterion,

not a method which produces conflict serializable
schedules.

• We never see a history explicitly – it would be too
late anyway to check for cycles in the corresponding
conflict graph at the end of the day...

• We are looking for methods (synchronization methods)
which enforce the scheduler to produce only conflict
serializable schedules.

• This has to be proven according to the correctness
criterion ("No cycles in the Conflict Graph).

11-TA-43

SummarySummary of of thethe TA TA modelmodel

• Serial executions of a fixed set of transactions T trivially
have isolation properties

• Schedules of T with the same effects as an (arbitrary)
serial execution are intuitively correct

• If all conflicting pairs of atomic operations are executed in
the same order in some schedule S' as in the schedule S,
the effects of S and S' would be the same

• Conflict graph is a simple criterion to check conflict
serializability

• Conflict serializability is more restrictive than necessary
(see view serializability -> literature)

• Serializability is a theoretical model which defines
correctness of executions.

