Freie Universitat (|7):

12.3 Nonlocking schedulers

12.3.1 not discussed in class

12.3.1 Time stamp ordering
Basic idea:
- assign timestamp when transaction starts

- if ts(tl) < ts(t2) ... < ts(tn), then scheduler has to produce
history equivalent* to t1, t2, t3, t4, ... tn

Timestamp ordering rule:

If pi(x) and qj(x) are conflicting operations,

then pi(x) Is executed before gj(x) < ts(ti) < ts(t))
or: pi(x) < gj(x) < ts(ti) < ts(t))

(*) in case of conflicting operations — otherwise order arbitrary.

12-CC-32

e hee)
" ; oy eey [T
Freie Universitat i

Timestamp ordering

TO concurrency control guarantees conflict-serializable
schedules

Proof sketch:

Assume not = cycle in conflict graph ¢+
cycle of length 2: ts(tl) < ts(t2) A ts(t2) <ts(tl) #
iInduction over length of cycle = #

= No cycle in conflict graph v/

(*) Do not confuse with Wait-For-Graph — only defined for locking protocols

12-CC-33

eate liivereits b
TO S Ch e d Ul ar reie Universitat , *;;7 £
Basic principle:

Abort transaction if its operation is "too late”

Each object x has two timestamps
maxW(x): timestamp of last writer (TA which wrote x)

maxR(x): timestamp of last reader

Whether op(x) of TAt, Is "too late", depends on ts(t) and
the read / write timestamps of X

12-CC-34

F . . oy ws (‘-Hli
TO Scheduler: read rele Unver it TS

Read: TA t; with timestamp ts(t;) wants to read x : r,(x)
(1) maxW(x) > ts(t):
= there is a younger TA which has written x

= contradicts timestamp ordering:
t. reads too late

= abort TAt;, restart t;

(i) maxW(x) <ts(t) = set maxR(x)=ts(t), go ahead
example: ------ |------ |----------- >
Wi(X) r;i(X) ts(t;) < ts(y)

What would happen in a locking scheduler in this case?

12-CC-35

TO Scheduler: write

Write: TA ti with timestamp ts(ti) wants to write x : wi(x)

(i) maxW(x) >ts(ti) v maxR(x) > ts(ti) :
[* X has been written or read by younger
transaction:

= contradicts timestamp ordering
= abort TAt

(i) otherwise: = schedule wi(x) for execution
set maxW(x) = ts(ti),
Why abort ?

wi(x) wj(x) abort(i) ts(ti) < ts(t))

n
L

X would have been overwritten in serialization according
to timestamp order anyway! ... ti < ...<{j....

12-CC-36

= P
" 2 T) T
Freie Universitat i

Thomas Write Rule

|ldea: younger write overwrites older write
without changing effect of timestamp ordering

maxR(x) maxW(x)

l . l
|

maxW(x) > ts(t)

t. wants to write x, but too late

Rules for Writer t with timestamp ts(t):
1. maxR(x) > ts(t) : abort T
2. maxW(x) > ts(t) : skip write // Thomas write rule
3. otherwise write(x), maxW(x) = TS(t)

12-CC-37

Discussion

Lightweight solution.
— Serializable? Obvious
— Why not replace 2PL in DBS?

Timestamp ordering optimistic or pessimistic??

There are more protocols using timestamps
(BOT-timestamp or EOT-timestamp)

but different from timestamp ordering protocol

12-CC-38

) Q\TIT‘A Iy
12.3.2 Optimistic CC rele Universitat Yz}

Optimistic concurrency control
— Locks are expensive

— Few conflicts = retrospective check for conflicts
cheaper

Basic idea: all transactions work on copies,
check for conflicts before write into DB

If conflict detected (*): abort TA else commit

(*) how to detect conflicts??

12-CC-39

Freie Universitat (L Se)

Phases of optimistic cc

BOT
EOT

L |

M
'Read' phase:
All data used are Validation phase: Commit phase:
copied to private any conflicts? write all (changed)
workspace and used if yes: resolve data into DB

by the application,
some are modified, but
not written intO DB.

12-CC-40

Backward oriented concurrency control (BOCF

r(x)

T2 : - | Commit or rollback?
r(y)
T1) | EOT
w(x) w(y)
T3 — ——| EOT
TA4 | ! still active
4(a) WA

« ReadSet R(T) = data, transaction T has read in read phase

 WriteSet W (T) = data (on copies!), T has changed in read phase

Assumption: W(T) c R(T) - necessary? why?
Example above: x,y € R(T2), X,y € W(T3), z € W(T1)

12-CC-41

Freie Universitat

lﬁs
)

@TIT

[\\1 {
\’ :
‘- %;r:'
St

PrReie

What is a conflict?

e Letx € R(T) . T wants to validate.

o |If a transaction S different from T read X,
but did not commit = no problem

e If a transaction S different from T committed after BOT(T),
DB state of x may be different from x at BOT(T) = conflict

BOCC validate(T) :
If for all transactions T' which committed after BOT(T) :

R(T) nW(T') = then T.commit // successful validation
else T.abort

12-CC-42

Opt|m|St|C CC: BOCC Freie Universitat "

r(y)
TA2 r:(a) - | Commit or rollback?
TAl) | EOT
w(x) w(y)
TA3 ! ' | EOT
N \ still active
' w4 (X)

More aborts than necessary :
R(TA2) N W(TA3) =& .
Note: No abort when 2PL synchronization !

Question: Validation - what happens, if more than one TA validates?

12-CC-43

(= 2
. ; oy eey [T
Freie Universitat (|7):

Implementation

Implementation of backward oriented OCC

— Each object x has a timestamp t, where t is the
commit time of the last transaction which modified x

— When T validates, it compares the current timestamp
t..,, Of each object x with the timestamp t 4 of x had
when it was read by T.

— if (forall xread by T: t 4 = t..,) COMmMIt;
else abort T; start T again;

These timestamps have NOTHING to do with Concurrency Control
using timestamp ordering !!

12-CC-44

" ; oy ooy ['
Freie Universitat i3

Implementation

Have timestamps of objects x read but not written by T
to be compared during validation?

r(x) r(y) w(y=y+Xx)
TO | | =
CammmmmmTTTT Validation/
Tl o Write phase
W(X)

Serializable: TO: T1

12-CC-45

Implementation

Have timestamps of objects x read but not written by T
to compared during validation?

r(x) r(y) w(y=y+Xx)
TO i i —
[emmmmmmT Validation/
Tl o Write phase
w(x)
w(y)

Cycle in conflict graph : TO; T1; TO

Consequence: records have to be checked which TO read only!

12-CC-46

. i oy ooy [0 I
Freie Universitat i ﬂf

Implementation

... timestamps of objects x read but not written by T
have also to be compared during validation.

I’(X) r(y) W(y new)

TO 1 1 —

Implementations often assume,

that update of x is only dependent

T1 — on the old value of x, e.g.

W(x) many OR mappers. |

w(y) SQLServer: cursor can be defined
OPTIMISTIC WITH VALUE,

In case of update of a row

compares value read and

Only a problem, if y. ., depends on x! | Value in database.
OPTIMISTIC WITH VERSIONS

Cycle in conflict graph : TO; T1; TO

12-CC-47

ALy S
S Y. . Freie Uni itat Gyl -
Optimistic CC: FOCC S

Forward oriented optimistic Concurrency control (FOCC)
Forward looking validation phase:

If there is a running transaction T' which read data
written by the validating transaction T then solve
the conflict (e.g. kill T'), else commit

TA | r(a) [(Y):
r(z) ..w(z
(2) W) + EOI Commit or solve conflict?
r(x) w(x) r(y) w
TA3 { 0 wW(x) r(y) w(y) EOT

12-CC-48

] 2
" ; oy eey [T\
Freie Universitat 15

Concurrency: Optimistic CC

TA? | r(a) PI(Y)

TA3 Commit or solve conflict?

W) r(y) wly) eqgr

FOCC validate(T) : if(for all running transactions (T")
R(T*) mW(T) = O
T.commit // successftul validation
else solve conflict (T, T%)

R(T"): Read set of T' at validation time of T (current read set)

12-CC-49

Freie Universitét G

Optimistic Concurrency control

Validation of "read only" transactions T:
FOCC guarantees successful validation !

FOCC has greater flexibility
Validating TA may decide on victims!

a2 | (x))

) w(x) rly) wiy) EQT

TA3 solve conflict:

abort TA3 or TA2

* Issues for both approaches:
fast validation — only one TA can validate at a time.
Fast and atomic commit processing,

« Useful in situation with few expected conflicts.

12-CC-50

] 2
" P oy wey [T
Freie Universitat i

Implementation of Read / Write sets

Thinkfood:

Is it possible to implement of Read / Write sets used by
FOCC by means of timestamps ts(x) as BOCC?

— what about committed TA concurrent to validating?

— Important detail: how to avoid that read-timestamps
attached to records have to be written back to disk? !

12-CC-51

e R
. . oy eey [S l;'.
Freie Universitat L=)

12.3.3 Principle of Multiversion Concurrency control ,
Arrows from

: :] TA2-ops to
Multiversion CC: conflicting TA1-0ps

F1(x) WL00 1260 w2ly) rLly) wi(z) ol w2(a) c2

not serializable.

LR

\S 4
Wirrens

If r1(y) had arrived at the scheduler before
w2(y) the schedule would have been serializable.

Main idea of multiversion concurrency control : Reads
should see a consistent (and committed) state, which
might be older than the current object state.

12-CC-52

] 2
- . oy ooy [N T
Freie Universitat i

Update strategies and versions

Required:
Different versions of an object
Particular important: 2 versions

Implementation depends on the how DB is updated:

— update in place: object is updated in the DB
(compare: update of copy in optimistic cc)

— No update at all:

each update is an insert
of a new version (Postgres solution).

12-CC-53

Freie Universitét G

Isolation levels?

 What does read committed mean exactly?

wO(x0) cO r2(x0) wi(x1l) wil(yl) cl r2(yl) r2(x1) (*)

|

TAZ2 reads only committed data: READ COMMITTED

!

But not REPEATABLE, not SERIALIZABLE

(*) wi(x;)) means: TA, produces version i of X: X;;
r(y,) means: TA, reads version of y produced by TA,
12-CC-54

] 2
- . oy ooy [N T
Freie Universitat i

Transaction level consistency

ldea: each transaction reads only objects from the
same DB state

Requirement: each version of an object has as a timestamp
the commit time cts; of the TAI which produced this version:

e.g.: (x; cts;) means: TA, produced this version and
committed at ts;

12-CC-55

Transaction level consistency rreie IVEtety

Def.: A Transaction TA; with BOT time stamp ts(i) is
transaction level consistent iff

for all objects x the version (x;cts;) is read by TA; which
IS defined by:

cts; = max {cts; : (x;, cts;) Is aversion and cts; <ts;}

Def.. Snapshot number: cts assigned to TA .
Reflects the state of the DB which TA observes at BOT.

If only one version: nothing new — read committed.
Multiple versions: Need Read-only TA read locks at all?

12-CC-56

Freie Universitat i

MVCC pragmatics

 Difficult to integrate MVCC into a DBS kernel
« Even difficult protocols in general

 Postgres: The design decision never to update but to
append new "record states" greatly alleviates MVC
synchronisation,

 Easy:
Process Read only transactions different from
R/W transactions.

12-CC-57

sl lT
(o= 3
& \’\1 { U

Freie Universitat g

Read-only Transactions

Assume scheduler knows that TA t will only read,
why read-locks?

o Goal: r(x) of t should never be member of a conflict pair
= no locks, no delay, execute immediately

SQOL:
SET TRANSACTION READ ONLY
FOR READ ONLY in cursor definition

Important examples: e.g. browsing a product catalogue

12-CC-58

o
| K2

R A

e

-

54 e
Freie Universitat (| = /)
.#%ig;_,ﬁ

Read Only transaction

Basic idea of Read-only transactions:
e several version of x with commit-timestamp of TA which
wrote X ("produced this version of x"): (x(1),ts1),..,(X(k),tsk)

 Read-only TA t with begin timestamp ts(t)
reads version (Xx(i),tsi) with tsi = max{tsj: tsj < ts(t)}

 Why does it work?

 Why is more than one version needed?

12-CC-59

Characteristics of RO-TA Frete Unversitat G

« A RO-Transaction always is (reads) transaction
consistent.

e No Read locks!
Obvious: no conflicts — reads on committed versions

 More than two versions needed.

Issue: management of (in principle) arbitrary many versions

12-CC-60

MVCC / Read Only TAs: Example

call sequence: TAl, TA4 and TA5 are RO
R1(X) r2(x)w2(x)r3(x)r2(y)R4(z)w2(y)c2R4(x)c4w3(xX)R5(z)c3R1(y)c1R5(x)c5

R1(x0) _____RKy0)cl
r2(x0)w2(x2)__r2(y0)___ w2(y2)c2 , 3versionoty
/! needed!
blocked.......... r3(x2)_ w3(x3)c3 /
R4(z0) R4(x0)c4 g
ré(y2) _wo6(y6) c6
R5(z0) R5(x2)c5

R1(y0): there exists a newer version y2, but RO_TA1 is older

R5(x2): reads x2 since TA3 which produces x3, commits after TA 5 begins
R4(x0): same with TA2, which produces x2

TAS3 has been blocked, since TA2 holds lock on x, r3(x2) after TA2 *€drifiited

o B
" ; oy eey [T
Freie Universitat i

Multiple versions?

Assumption: update in place — otherwise next to trivial
Use DBS log for reconstruction of old versions!

Log: all operation of the DBS have to logged in a log file
for recovery purposes (see below)

"Roll back" for reconstruction past states of object x.

When needed?

12-CC-62

MVCC: How to implement versions

Read Only Multiple version CC (used in Oracle)

SELECT. .. No read locks needed for consistent read,
"system ___18EN100) S2PL write locks
change number
10023"
-> statement
SCN

.~ Data have to be temporari-
ly stored anyway: System
has to be prepared for
Rollback"

... or transaction
commit time for
transaction
level read

consistenc . .
y Read those items with SCN' < SCN of statement

reconstruct all others from log records

12-CC-63

Roadmap MVCC

What we have:
No Read-locks for RO-TA if more than one version per
object

What we would like:
- No Read locks at all!'?
- No write locks??

Overall goal: decrease synchronization (locking) overhead
If more than on version available.

12-CC-64

. Ereie FHiJ%
Read Consistency MVCC e

« Combine Read-only TA and lock based cc
— Read-only as above

— write (X):
write lock the most current version of x and

produce version (X;, Cts)
= other writers have to wait

— read(x):

read last committed version without locking(!)
— READ COMMITTED , not repeatable

12-CC-65

: ; v [@
Freie Universitat 15

Read consistent MVCC

Example
t
wO(x0) cO
r2(x0) r2(yl) r2(x1)
R3(x0) R3(y0) R3(x0)
wl(x1l) wl(yl) cl
R= Read Only \/
why?

Remember:

READ COMMITTED with 2PL requires a (short)
read lock on an item x to be read.
Why needed with one version, but not with more than one?

12-CC-66

Read Consistency MVCC (2) Frete Universitat 705

* Most significant! No Read locks at all!

e More than READ COMMITTED
... sSince READ ONLY TA serializable

e Fits to standard 2PL for R/O transactions

but...
no repeatable read, not serializable

 How to avoid lost updates and guarantee repeatable read
without reintroducing read locks?

« Can write locks be avoided? ??

12-CC-67

: Freie Universitat
SNAPSHOT Isolation R

'‘writes' are the problem .

Suppose: w0(x0), c0, r1(x0) r2(x0) wil(x1l) c1 w2(x2) c2

e Avoid conflicting writes of concurrent transactions!

= Write set of concurrent (overlapping!) transactions
must be disjoint.

... and Repeatable Read?

12-CC-68

STl
" " Freie Uni itat G
SNAPSHOT isolation St

* read(x): versionof x that was current when TA started
e.g. max (x;, cts;), cts; < ts(TA)

— transaction level consistent, no read locks

* If write set of TA; und TAI not disjoint:
abort one of them!

How to implement with / without(!) write locks??

12-CC-69

: ; Freie Universitét "
SNAPSHOT isolation e e s

"First commit wins" implementation.
Transaction T

1. make updates locally (like optimistic cc)

2. Commit step 1.
validate: have all updated objects the same
version number which T read?

3. If yes: commit else abort

No writes locks, no read locks!!

12-CC-70

:k
SNAPSHOT isolation el Sver

Lock based implementation

Let snapshot number of TA1 be s
TAL: write (X)

If s <currentversion of x;: abort
Some TA* modified x after BOT(TAL1) and committed!

example: r1(y0) r2(x0) w2(x2) c2 r1(x0) wl

/ TA1 aborts

TA1 reads TA level consistent,
l.e. the version of x that was current
at BOT of TA1

else...

12-CC-71

| | . . Freie Uni itat .'k;'ﬁ:‘l‘.i"'.'
SNAPSHOT isolation: IOCkIng reie Universitd ()

else: TA1l locks x 2PL if it wants to produce a new
version.

If x already (write) locked by TA* TA1 waits until:
TA* commits = TA1 aborts
else
TA* aborts = TA1 commits
else commit.

No read locks needed

Repeatable Read, but not Serializable.

« Compatible with update in place, if version reconstructed
from the log.

12-CC-72

] 2
" ; oy eey [T
Freie Universitat i

Serializability and versions

Disadvantage of snapshot isolation:
— not serializable in all cases

— Abort of a TA Iin case of w-w conflicts
Maybe waiting for the release of a lock would be
sufficient?

Generalized lock protocol with 2 versions only:

 only one TA can prepare a new version
— Standard lock protocol (2 PL)

e Writer wants to publish new version of x:
no reader of x should still be active.

12-CC-73

Multiversion CC: 2 versions (2VMVCCF= " 1t

2 versions of each object x:
- a consistent one x; with commit time of last
modifying transaction t;as a timestamp
- a writer t may prepare a second version x;, not
visible until commit of writing TA t,

Restrictions for 2VMCC.:
* Never two writers at the same time on the same object
= only one new version can be prepared
* New version cannot be published, if a reader of the
(consistent) old version is still active

12-CC-74

<5 \l “
2VMVCC Freie Universitat \'

rl(x0) wi(x1l) ri(z0) wi(zl) cl
r2(x0) w2(y2) r2(z1) c2

Suppose z1 = zO+x1: inconsistent — two different states of X in
the TA t, , read not repeatable —remember: only 2 versions

Delay the commit of t, until all readers of objects
written by t; (i.e. x, z) have committed:

rl(x0) wil(x1l) r1(z0) wl(zl) (delayed)cl
r2(x0) w2(y2) r2(z0) c2

12-CC-75

Freie Universitat lf
\ "3

Multiversion concurrency

Lock based MVCC ("MVCC2PL")

w(X): write lock x If not locked, else wait

r(x): read lock on x always granted for last
consistent version

c(x): acquire certify lock, if prepared version
of X Is to become the current consistent version,
granted, if now reader or writer on x active.

R W C
R n " i Compatibility matrix
W + : -

12-CC-76

o B
" P oy wey [T
Freie Universitat i

Multiversion concurrency

Two-version-2PL MVCC

has only one uncommitted version, one consistent
("current") version because writes are incompatible

Readers benefit, not writers
- May be generalized to more than one uncommitted
- MVCC is most in practice

Deadlocks?
Read locks needed why?

Serializable?

12-CC-77

2PL-MVCC Freie Universitat i

x0,y0,z0 : consistent state of x,y,z
XI := value of x produced by TAI

Call sequence:
ri(x) w2(y) ril(y) wil(x) cl r3(y) r2(x) w2(x)c2 r3(x) c3

v

T1 r1(x0) r1(y0) wl(x1) c1 t
T2 w2(y2) 2(XLW2(X2) .oeevneeennnenn. c2
|— N
T3 | r3(y0) r3(x1) c3
| pra i
,// C_lock for y not granted, wait until
ol T3 finished.

Consistent version read, not the uncommitted y2! D ces

Update replaced by append Freie Universitét Y\ s
The Postgres solution...
e ... IS much trickier

e ... will be presumably analyzed in DB-Tech (winter term)

« MVCC also employed in non-DB applications

12-CC-79

] o)
; o vey (S0 TAE:
niversitat gl)

Summary: Transactions and concurref&y

Transactions: very import concept

Model for consistent, isolated execution of concurrent TAs
Scheduler has to decide on interleaving of

operations

Serializability: correctness criterion

Implementation of serializability:
concurrency control:

2-phase-locking, time stamping, multiversion cc ...and more
Strict 2PL restrictive, but employed in many DBS

Read-mostly DB has fostered MVCC, today in most
DBS Oracle, Postgres, SQL-Server and more...

see comprehensive overview of synchronization in DBS in the reader

12-CC-80

