
12 Concurrency control 12 Concurrency control

12.1 Serializability and Concurrency Control
12.2 Locking
Lock protocols

Two phase locking
Strict transactional protocols
Lock conflicts and Deadlocks
Lock modes
Deadlock detection, resolution, avoidance

12.3 Nonlocking concurrency control
12.3.1 Time stamp ordering

12.3.2 Optimistic cc methods
12.3.3 Multiversion cc

Lit.: Eickler/ Kemper chap 11.6-11.12, Elmasri /Navathe chap. 20, Garcia-Molina, Ullman, Widom: chap. 18

12-CC-2

Concurrency controlConcurrency control……and serializabilityand serializability

Wanted:
effective real-time scheduling of operations with
guaranteed serializability of the resulting execution
sequence.

Transaction
manager Scheduler

Reads / writes
TA 1

TA n Controls
transactions

(Begin,
Commit,..)

Controls
execution of
DB calls:
ri(x),wj(y)...

12-CC-3

Concurrency controlConcurrency control

Def.: Concurrency control (*) in DBS
Methods for scheduling the steps (operations) of
database transactions in a way which isolates concurrent
transactions in order to guarantee serializability.
("between system start and shutdown”).

(*) "Synchronisierung"

12-CC-4

MethodsMethods

Approaches:
(1) Pessimistic: Scheduler has to check if next incoming

operation can be executed without compromising
isolation.

(2) Optimistic: Check for potential conflicts at the end of a
TA. If yes: abort, else write effects into DB

(3) Multiversion cc (MVCC): orthogonal to (1), (2).
More than one version of each data object allowed.
May employ (1) or (2).
Main advantage: readers preferred.
⇒ very useful for "read-mostly" databases

12-CC-5

CC methodsCC methods

Primary concurrency control methods

1. Locking (most important)

2. Non-locking protocols:
Optimistic concurrency control
Time stamps
Multiversion CC (locking and non-locking variants)

3. MVCC more and more important

12-CC-6

Concurrency controlConcurrency control

No explicit locking in application programs

- error prone,
- responsibility of scheduler (and lock manager)
In most DBS also explicit locking allowed in addition to implicit locking
by scheduler. Use with care!

There are read lock (shared locks) and write locks
(exclusive) - makes sense: no read-read conflicts

Not considered here: transaction independent locking, e.g.
writing a page p to disk requires a short term lock (a
"latch") on p

12-CC-7

Optimistic vs. pessimistic Optimistic vs. pessimistic

Locking is pessimistic

Scenario: during operation op (x) of TA1 a (potentially)
conflicting operation op'(x) of TA2 may access the same
object x .

Avoided by locking x before accessing this object.

T1: r1(u), w1(y).................... w1(y), w1(x) c1

T2: r2(y) w2(x) w2(z), c2

T3: r3(u) w3(x) c3
t

How long should a data objects be locked?

12-CC-8

T12.2. Lock protocolsT12.2. Lock protocols

Def.: Standard locking
1. Each object referenced by TAi has to be locked

before usage
2. Existing locks of other TA's will be respected

i.e. wait until lock released.
3. Locks are released eventually.
4. A requests of a lock by a TA which it already holds,

has no effect.
5. No preemption of a lock by another TA.

12-CC-9

Lock Lock protocolsprotocols

Standard object locking does not help....
Lock each object before reading / writing,
unlock when operation finished

schedule may not be serializable (why?)

Example
l1(x) r1(x) ul1(x) l1(x) w1(x) ul(x)

l2(x) w2(x) ul2(x)

lost update useless

l(x), ul(x)= lock / unlock x

12-CC-10

Lock protocolsLock protocols
Preclaiming

• Acquire all locks needed before performing an
operation

• release, if you do not get all of them. Try again.
race condition, transaction could starve!

• Execute transaction
• Release locks

Begin TA End TA (commit or abort)

Lock aquisition phase

Work phase

locks

time

Preclaiming serializable?

Why (not) ?

Bad: objects to be
processed may not
be known in
advance.

Not used in DBS.

12-CC-11

Two phase locking (2PL)Two phase locking (2PL)

Standard method for concurrency control in many database systems

Def.: Two phase locking
1. All rules of standard locking hold.
2. If a transaction TA releases a lock it holds on

an object, TA must not aquire a new lock on
any object.

NO LOCK AFTER UNLOCK !

12-CC-12

Concurrency controlConcurrency control: 2PL: 2PL

Locked objects may be read / written already in lock
acquisition phase !

Begin TA
End TA (commit or abort)

Lock acquisition phase

Release (shrinking) phase
NO LOCK AFTER UNLOCK

locks

time

work phase of TA

Lock point

12-CC-13

Concurrency control Concurrency control 2PL2PL

Why no lock after unlock?

TA1 TA2
l1(x)
r1(x)
x=x*10,
ul1(x)

l2(x),
r2(x),
x:=x+1,
w2(x)
ul2(x)

l1(y)
w1(y=x+y)
ul1(y)

inconsistent (wrong!) y

Lock profil of TA1 is NOT 2PL

t

TA1

time

1

12-CC-14

ConcurrencyConcurrency controlcontrol 2PL2PL

2-Phase locking theorem

Proof sketch:
Suppose a resulting schedule is not serializable.
⇒ conflict graph contains a cycle ⇒ there are
transactions TA1 and TA2 with conflict pairs (p,q)
and (q', p').
⇒ One of the them must have violated the

"no lock after unlock" rule

(assuming a cycle of length 1, induction for the general case)

If all transactions follow the 2-phase locking protocol, the
resulting history is serializable.

12-CC-15

ConcurrencyConcurrency controlcontrol 2PL2PL

Let e.g. (p,q) = (r1(x), w2(x)),
(q',p') = (w2(y), w1(y))

Analyze all of the possible execution sequences:
p, q, q', p
p, q', q, p'
q', p, q, p'
q', p, p', q
q', p', p, q

Same holds for the other possible sequences ⇒ Theorem

T2: l (y), T1: l (x), T2: l (x), T1: l (y)

T1 must have released lock on x and
acquired one on y (or T2 must have
acquired after release)
Violates 2-phase rule!
Contradiction to assumption that all
TAs use 2PL protocol

12-CC-16

2PL 2PL ≡≡ SerializableSerializable? ?

The converse of the 2PL theorem does not hold:
There are histories which are serializable, but the TAs did
not lock according to 2 PL.

l1(x)r1[x] ul1(x) l2(x) w2[x] ul2(x) c2 l(y) w1[y] ul(y) c1

Conflict graph

T1 T2

12-CC-17

Strict concurrency protocols: motivationStrict concurrency protocols: motivation

Begin TA

Release phase

abort

locks

time

TA1

A different transaction TA2 could have used an object x
which was unlocked by TA1 in the release phase.
... no problem, if TA1 commits,
but abort... ??

Recursive situation ⇒ cascading abort

Begin TA2

12-CC-18

NonstrictNonstrict example: even worseexample: even worse

Begin TA2

Release phase

abort TA1

locks

time

TA1 TA2

Worse situation, why?

c2

12-CC-19

Strict 2PLStrict 2PL

Release all
locks at commit

time

Strict 2PL protocol

Locking protocol is strict if locks are released
at commit / abort.

12-CC-20

Lock Lock modesmodes

Primary goal
no harmful effects (lost update, ...)

Secondary goal
Degree of parallelism should be as high as possible,

even when locking is used
Low deadlock probability, if any

Ways to increase parallelism
Compatible locks (read versus write semantics)
Different lock granularity
Application semantics
No locks: e.g. time stamps, optimistic cc

12-CC-21

Lock modesLock modes

Lock modes and lock compatibility
RW-(SX) – model: read (R) and eXclusive(W) locks

(or: write locks)

Lock compatibility in the RW model:

Objects locked in R-mode may be locked in
R- mode by other transactions(+)

Objects locked in W-mode may not be locked by
any other transaction in any mode.
Lock conflict ⇒ requesting TA has to wait

--W

-+R

WR
requester

holder

Lock compatibility matrix

R-lock =
Shared (S) lock
W-lock = X-lock

12-CC-22

Lock modesLock modes
Hierarchical locking

– One single lock granularity (e.g. records) insufficient,
large overhead when many rows have to be locked

⇒ Most DBS have at least two lock granularities:
row locks and table locks

Issue: TAi wants to lock table R

• some rows of R locked by different transactions

different lock conflict as before: TAi is waiting for
release of all record locks

• No other TA should be able to lock a record,
otherwise TAi could starve

12-CC-23

Concurrency controlConcurrency control

Locks of different granularity

Lock held by other
transactionsn

Lock request
for D

D

Lock request: must not be
granted until lock on D
is released

Efficient implementation of this type of situation??

12-CC-24

Lock modes: Hierarchical lockingLock modes: Hierarchical locking

Intention locks

Feature of intention locks for hierarchical locking:
for each lock mode, there is an intention lock,
e.g. for RX-lock modes: IR and IX

Semantics:

A TA holds an Intention_ρ-lock on an object D on level i, if
and only if it holds an ρ-lock on an object D' on level
j > i subordinate to D

DB

row k

table R table S

row j row i row m row n row o row p

Object hierachy
(example)

Page locks?

Level 0

Level 1

Level 2

12-CC-25

Concurrency controlConcurrency control
Hierarchical locking

An object O on level i contains all objects x on level i+1
Locks of O lock all subordinate objects x
If a subordinate object x (level i+1) is locked, this is

indicated by an intention lock on level i

DB

row k

table R table S

row j row i row m row n row o row p

IX2

X2

IS1

R1

X3

IX3

IX2 IX3

Lock escalation
If too many objects x on level i+1 are locked by a
transaction, it may be converted into one lock on level i

12-CC-26

Lock modesLock modes
Hierarchical locking (cont)

Advantage: one lookup is sufficient to check if a lock
on higher level (say on a table) can be granted

Protocol: if a TA wants to lock an object on level i in
mode <M> (X or R), lock all objects on higher level
(on the path to root) in I<M> – mode

Easy to check, if the locks on all subordinate objects are
released: simply implement I<M>-lock as a counter

----X

-+-+R

--++IX

-+++IR

XRIXIR
Compatibility matrix

requester

holder

12-CC-27

Lock conflicts and deadlocks Lock conflicts and deadlocks

Lock conflict
Two or more processes request an exclusive lock for

the same object
Deadlock (*)

Locking: always threat of deadlock if
• No preemption
• No lock release in case of lock conflicts

Two-Phase locking may cause deadlocks
li(x) = Transaction i requests lock on x
ui(x) = Transaction i releases lock on x
Lock sequence:
l1(x) , l2(y), ..., l1(y), l2(x) causes deadlock

(*) Verklemmung

12-CC-28

Deadlock detection and resolution Deadlock detection and resolution

Deadlocks
Release of a lock could break rule 4

wl1(x) , wl2(y), wl1(y) -> TA1: WAIT for wu2(y) , wl2(x) -> TA2: WAIT for
wu1(x)

Note: deadlocks very different from lock conflicts:

.... wl1(x) , wl2(y), wl1(y) -> TA1: WAIT for wu2(y) wl2(z), w2(y), w2(z),
wu2(y),...

Lock conflict, y is locked by TA2, TA1 waits for unlock

Lock conflict resolved by wu2(x), TA1 proceeds

Not schedules, but call sequences and
lock / unlock operations provided by the scheduler

12-CC-29

DeadlockDeadlock

There is a deadlock between transactions
⇔ WF contains a cycle

⇒ System has to check WF for cycles periodically.

Def.: Wait-for graph WF = (T, E) where
- node set T is the set of running transactions
- edges (Ti, Tj) ∈ E ⇔ Ti required a lock on some object x

which has been locked by Tj in an incompatible mode.

12-CC-30

Deadlock resolutionDeadlock resolution
Resolving deadlocks

In case of cycle:
• One of the waiting transaction ("victim") has to be

rolled back
• Which one? Heuristic decision: youngest, TA with

least write activity, ...
Timeout: an alternative?

• If TA has been waiting longer than the time limit, it is
aborted.

• No: efficient but may roll back innocent victims
(deadlock does not exist)

Oracle: WF-graph in central DB, timeout in distributed

