= P r:f' b
12.3 Nonlocking schedulers Frele tnfve Hal"‘{ﬁ&'l“

| 12.3.1 not discussed in class |

12.3.1 Time stamp ordering
Basic idea:
- assign timestamp when transaction starts

- if ts(tl) < ts(t2) ... < ts(tn), then scheduler has to produce
history equivalent* to t1, t2, t3, t4, ... tn

Timestamp ordering rule:

If pi(x) and gj(x) are conflicting operations,

then pi(x) is executed before gj(x) < ts(ti) < ts(tj)
or: pi(x) < gj(x) < ts(ti) < ts(t)

(*) in case of conflicting operations — otherwise order arbitrary.

12-CC-32

. . e r:d"\ e
T|mestamp Ordel’lng Freie U-IIV‘_IslMl.Q.ﬁSL.lII

TO concurrency control guarantees conflict-serializable
schedules

Proof sketch:

Assume not = cycle in conflict graph ()
cycle of length 2: ts(t1) < ts(t2) A ts(t2) <ts(tl) #
induction over length of cycle = #

= No cycle in conflict graph v/

(*) Do not confuse with Wait-For-Graph — only defined for locking protocols

12-CC-33

TO Scheduler Freie u.uv-_--mal.%.ﬁ&.lu
Basic principle:

Abort transaction if its operation is "too late”

Each object x has two timestamps
maxW(x): timestamp of last writer (TA which wrote x)

maxR(x): timestamp of last reader

Whether op(x) of TAt; is "too late", depends on ts(t) and
the read / write timestamps of x

12-CC-34

=R e ; n’é"'"".\ S

TO Scheduler: read Frele u.uv-_.mal.?_?ﬁ’&;.m

Read: TA t; with timestamp ts(t) wants to read x : r(x)
(i) maxW(x) > ts(t):

= thereis a younger TA which has written x

= contradicts timestamp ordering:
t; reads too late
= abort TAt;, restartt;

(i) maxw(x) <tst) = setmaxR(x) =ts(t), go ahead
example: ------ |-=---- [+=mmmmmenen >
w;(x) ri(x) ts(t) < ts(t)

What would happen in a locking scheduler in this case?

12-CC-35

Freie Universitit | H‘%{ Berlir

Write: TA ti with timestamp ts(ti) wants to write x : wi(x)
i) maxwW(x) >ts(ti) v maxR(x) > ts(ti) :
/* x has been written or read by younger
transaction:

= contradicts timestamp ordering
= abort TAti

(i) otherwise: = schedule wi(x) for execution
set maxW(x) = ts(ti),

TO Scheduler: write

Why abort ?

wi(x) wj(x) abort(i)

ts(ti) < ts(tj)

x would have been overwritten in serialization according
to timestamp order anyway! ... ti < ...<{j....

12-CC-36

Thomas Write Rule Freie UI”“IHML""(‘_'TI‘IE’SHH

Idea: younger write overwrites older write
without changing effect of timestamp ordering

maxR(x) maxWw (x)

l l
I

maxW(x) > ts(t;)

t; wants to write x, but too late

Rules for Writer t with timestamp ts(t):
1. maxR(x) > ts(t) : abort T
2. maxW(x) > ts(t) : skip write // Thomas write rule
3. otherwise write(x), maxW(x) = TS(t)

12-CC-37

Freie Universitit rﬁlﬁ\ Berlir
e

Discussion

« Lightweight solution.
— Serializable? Obvious
— Why not replace 2PL in DBS?

¢ Timestamp ordering optimistic or pessimistic??

* There are more protocols using timestamps
(BOT-timestamp or EOT-timestamp)

but different from timestamp ordering protocol

12-CC-38

12.3.2 Optlmlstlc cC Freie UPIiWISI‘Ml-{% Berlir

Optimistic concurrency control
— Locks are expensive

— Few conflicts = retrospective check for conflicts
cheaper

Basic idea: all transactions work on copies,
check for conflicts before write into DB

if conflict detected (*): abort TA else commit

(*) how to detect conflicts??

12-CC-39

L Freie Universitst bR Bert
Phases of optimistic cc . s‘“%&ﬁf‘} x

BOT

‘Read’ phase:

All data used are Validation phase:
copied to private any conflicts?
workspace and used if yes: resolve

by the application,

some are modified, but

not written int0 DB.

Commit phase:
write all (changed)
data into DB

12-CC-40

. Exe{e Universi CI* 1) erlir
Backward oriented concurrency control (BOCE)™" ““'Qﬁfs ?

r(x)
T2 i L P— { Commit or rollback?
r(y)
o ¥ eor
w(x) w(y)
T3 '_I—IY_| EOT
TA4 r4(la) w'4(x) still active
* ReadSet R(T) = data, transaction T has read in read phase

«WriteSet W (T) = data (on copies!), T has changed in read phase

Assumption: W(T) < R(T) - necessary? why?
Example above: x,y € R(T2), x,y € W(T3), z € W(T1)

12-CC-41

o
Freie Universitat |

What is a conflict?

e Letx e R(T). T wants to validate.

« If a transaction S different from T read X,
but did not commit = no problem

« If a transaction S different from T committed after BOT(T),
DB state of x may be different from x at BOT(T) = conflict

BOCC_validate(T) :
if for all transactions T' which committed after BOT(T) :
R(T) nW(T') =& then T.commit // successful validation
else T.abort

12-CC-42

Optlmlstlc CC BOCC Freie Llrlivulsiulg:% Berlir

r(y)
TA2 r,(u) L ' 1 Commit or rollback?
w @ | eor
w(x) w(y)
TA3 '_I—IY_| EOT

still active

WaK)
More aborts than necessary :

R(TA2) "W(TA3) 1= .
Note: No abort when 2PL synchronization !

Question: Validation - what happens, if more than one TA validates?

12-CC-43

Freie Universitat |

Implementation

Implementation of backward oriented OCC

— Each object x has a timestamp t, where t is the
commit time of the last transaction which modified x

— When T validates, it compares the current timestamp
t,ew Of €ach object x with the timestamp t,4 of x had
when it was read by T.

— if (for all x read by T: t;4 = t,,,) commit;
else abort T; start T again;

These timestamps have NOTHING to do with Concurrency Control
using timestamp ordering !!

12-CC-44

Freie Universitit rﬁ!ﬁ\ Berlir
e

Have timestamps of objects x read but not written by T
to be compared during validation?

Implementation

r(x) ry) w(y=y+x)
T0 + + +—

v,
N

Validation/
Write phase

T1 —_—

w(X)

Serializable: TO; T1

12-CC-45

o
Freie Universitat |

Implementation

Have timestamps of objects x read but not written by T
to compared during validation?

)) WO
TO + + +—

Validation/
Write phase

T1

Cycle in conflict graph : TO; T1; TO

Consequence: records have to be checked which TO read only!

12-CC-46

] RPN .15 | e
Implementatlon Freie Univers: WLQ&%EBL[“

... timestamps of objects x read but not written by T
have also to be compared during validation.

r(x) r(y) W(Y new)
TO t t +—

Implementations often assume,
that update of x is only dependent
on the old value of x, e.g.
many OR mappers.
SQLServer: cursor can be defined
OPTIMISTIC WITH VALUE,
In case of update of a row
compares value read and

i | | value in database.
Only a problem, if Yy, depends on x! OPTIMISTIC WITH VERSIONS

T1

w(x)
w(y)

Cycle in conflict graph : TO; T1; TO

12-CC-47

Optimistic CC: FOCC Frele Unbverstity
Forward oriented optimistic Concurrency control (FOCC)
Forward looking validation phase:

If there is a running transaction T' which read data
written by the validating transaction T then solve
the conflict (e.g. kill T'), else commit

TA2 " @ v,

1(2) .w(z
@ W@ EOT Commit or solve conflict?

TA3 1) w(x) r(y) W(y)IEOT

12-CC-48

dLaR
Frefe Universitit "'J H‘E Berlir

Concurrency: Optimistic CC

TA2 | r(a) r'(y) ;
TA3 MMT Commit or solve conflict?

FOCC_validate(T) : if(for all running transactions (T")
R(T) nW() = @
T.commit // successful validation
else solve_conflict (T, T%)

R(T'): Read set of T' at validation time of T (current read set)

12-CC-49

Optimistic Concurrency control

Validation of "read only" transactions T:
FOCC guarantees successful validation !
FOCC has greater flexibility
Validating TA may decide on victims!

TA2 | rd ™
TA3 'F_(XAMMT solve conflict:

abort TA3 or TA2
* Issues for both approaches:

fast validation — only one TA can validate at a time.
Fast and atomic commit processing,

« Useful in situation with few expected conflicts.

12-CC-50

Freie Universitit rﬁ'ﬁ\ Berlir
"’t‘pdf"‘

Implementation of Read / Write sets ”"'“'*‘“"Q_ﬁs"“'

Thinkfood:

Is it possible to implement of Read / Write sets used by
FOCC by means of timestamps ts(x) as BOCC?

— what about committed TA concurrent to validating?

— Important detail: how to avoid that read-timestamps
attached to records have to be written back to disk? !

12-CC-51

TAZ*ODS to
conflicting TA1-ops
r1(x) wil(x) rZ(my) ri(y) wil(z) clw2(a)c2
not serializable.

If r1(y) had arrived at the scheduler before
w2(y) the schedule would have been serializable.

Main idea of multiversion concurrency control : Reads

should see a consistent (and committed) state, which
might be older than the current object state.

12-CC-52

Y (€ | Y
Freie Universitat if 3 Berlin H N
12.3.3 Principle of Multiversion Concurrency control Update strategies and versions
Arrows from
Multiversion CC:

o TR
Freie Universitat "{‘ﬁ Berlir
Required:

Different versions of an object
Particular important: 2 versions

Implementation depends on the how DB is updated:

— update in place: object is updated in the DB
(compare: update of copy in optimistic cc)

— No update at all:
each update is an insert
of a new version (Postgres solution).

12-CC-53

Isolation levels?

Frefe Universitat 18 b“i‘ Berli
"’t‘pdf"‘

* What does read committed mean exactly?

wO(x0) cO r2(x0) wil(x1l) wi(yl) cl r2(yl) r2(x1)

b

TA2 reads only committed data: READ COMMITTED

*

But not REPEATABLE, not SERIALIZABLE

(*) w(x) means: TA, produces version i of x: x;;
r(y,) means: TA, reads version of y produced by TA,

12-CC-54

]] WY 5| T
Transaction level consistency frele 1 '“"““"Q_ﬁ“"“'

Idea: each transaction reads only objects from the
same DB state

Requirement: each version of an object has as a timestamp
the commit time cts; of the TAi which produced this version

e.g.: (x;, cts;) means: TA, produced this version and
committed at ts;

12-CC-55

=iLsiie
Freie Universitit

Transaction level consistency

Def.: A Transaction TA; with BOT time stamp ts(i) is
transaction level consistent iff

for all objects x the version (x;cts;) is read by TA; which
is defined by:

cts; = max {cts; : (x;, Cts)) is a version and cts; < ts;}

Def.: Snapshot number: cts assigned to TA .
Reflects the state of the DB which TA observes at BOT.

If only one version: nothing new — read committed.
Multiple versions: Need Read-only TA read locks at all?

12-CC-56

Freie Universitit

MVCC pragmatics

« Difficult to integrate MVCC into a DBS kernel
« Even difficult protocols in general

« Postgres: The design decision never to update but to
append new "record states" greatly alleviates MVC
synchronisation,

* Easy:
Process Read only transactions different from
R/W transactions.

12-CC-57

Freie Universitdt

Read-only Transactions

Assume scheduler knows that TA t will only read,
why read-locks?

« Goal: r(x) of t should never be member of a conflict pair
= no locks, no delay, execute immediately

SQL:
SET TRANSACTION READ ONLY
FOR READ ONLY in cursor definition

Important examples: e.g. browsing a product catalogue

12-CC-58

Read Only transaction Frele Universitdt _t_,’f“__,,-jofs"“'

Basic idea of Read-only transactions:
« several version of x with commit-timestamp of TA which
wrote X ("produced this version of x"): (x(1),ts1),..,(x(k),tsk)

* Read-only TA t with begin timestamp ts(t)
reads version (x(i),tsi) with tsi = max{tsj: tsj < ts(t)}
* Why does it work?

« Why is more than one version needed?

12-CC-59

Freie Universitdt

o
Characteristics of RO-TA ng»‘”

*« A RO-Transaction always is (reads) transaction

consistent.

¢ No Read locks'!
Obvious: no conflicts — reads on committed versions

¢ More than two versions needed.

Issue: management of (in principle) arbitrary many versions

12-CC-60

Freie Universitdt

MVCC / Read Only TAs: Example

call sequence: TA1, TA4 and TA5 are RO
R1(x) r2(x)w2(x)r3(x)r2(y)R4(z)w2(y)c2R4(x)c4w3(x)R5(z)c3R1(y)c1R5(x)c5

R1(x0) . R1(y0)c1
r2(x0)w2(x2)__r2(y0)____ w2(y2)c2 3 version of y
/ needed!
blocked.......... r3(x2)__w3(x3)c3
R4(20), R4(x0)c4 4
r6(y2)_w6(y6) c6
R5(20) R5(x2)c5

R1(y0): there exists a newer version y2, but RO_TAL is older

R5(x2): reads x2 since TA3 which produces x3, commits after TA 5 begins
R4(x0): same with TA2, which produces x2

TA3 has been blocked, since TA2 holds lock on x, r3(x2) after TA2 @dtrifiited

. . Frafo Univerei| l‘:é‘ = -
Multlple Vel’SlonS? Freie U-IIV‘_IslMl.Q.ﬁSL.lII
Assumption: update in place — otherwise next to trivial

Use DBS log for reconstruction of old versions!

Log: all operation of the DBS have to logged in a log file
for recovery purposes (see below)

"Roll back" for reconstruction past states of object x.

When needed?

12-CC-62

. . e r:d"\ e
MVCC: How to implement versions = ”""“"*““"Q_ﬁs"“'

Read Only Multiple version CC (used in Oracle)

aELENT. . No read locks needed for consistent read,

"system ____ SN 1) S2PL write locks

change number

10023"

-> statement
SCN

~Data have to be temporari-
ly stored anyway: System
has to be prepared for
Rollback"

... Or transaction|
commit time for
transaction
level read

consistency F
10311

Read those items with SCN' < SCN of statement
reconstruct all others from log records

12-CC-63

Freie Universitst AU Berti
Roadmap MVCC e e l'?_ﬁs'l

What we have:
No Read-locks for RO-TA if more than one version per
object

What we would like:
- No Read locks at all!?
- No write locks??
Overall goal: decrease synchronization (locking) overhead

if more than on version available.

12-CC-64

. Freie Universitst bR Bert
Read Consistency MVCC frele tnive m'?_gﬁf&'l
« Combine Read-only TA and lock based cc

— Read-only as above

— write (x):
write lock the most current version of x and
produce version (x;, cts;)
= other writers have to wait

— read(x):
read last committed version without locking(!)
= READ COMMITTED , not repeatable

12-CC-65

Read consistent MVCC ”""""*““"Q_ﬁe"“'

Example
t
wO(x0) cO
r2(x0) r2(yl) r2(x1)
R3(x0) R3(y0) R3(x0)
wl(x1) wi(yl) cl
R= Read Only \/
why?

Remember:

READ_COMMITTED with 2PL requires a (short)
read lock on an item x to be read.
Why needed with one version, but not with more than one?

12-CC-66

: Free Universitat L) perti
Read Consistency MVCC (2) frele tnive ‘“"%_gﬁfs"
* Most significant! No Read locks at all!

¢ More than READ COMMITTED
... since READ ONLY TA serializable

« Fits to standard 2PL for R/O transactions

but...
no repeatable read, not serializable

* How to avoid lost updates and guarantee repeatable read
without reintroducing read locks?
¢ Can write locks be avoided? ??

12-CC-67

Y (€ | T
SNAPSHOT Isolatlon Freie u.-uv'_'lsl(al.ééﬁ'ﬁwlu

'writes' are the problem .

Suppose: w0(x0), c0, r1(x0) r2(x0) wl(x1l) c1 w2(x2) c2

« Avoid conflicting writes of concurrent transactions!

= Write set of concurrent (overlapping!) transactions
must be disjoint.

... and Repeatable Read?

12-CC-68

Y (€ | T
SNAPSHOT ISO|atI0n Freie u.-uv'_'lsl(al.ééﬁ'ﬁwlu

« read(x): versionof x that was current when TA started

e.g. max (x;, cts;), cts; < ts(TA)

= transaction level consistent, no read locks

« if write set of TA; und TAi not disjoint:
abort one of them!

How to implement with / without(!) write locks??

12-CC-69

SNAPSHOT iSOIatiOn Freie u-uv-_--mal.%?ﬁ&.lu

"First commit wins" implementation.
Transaction T:

1. make updates locally (like optimistic cc)

2. Commit step 1:
validate: have all updated objects the same
version number which T read?

3. If yes: commit else abort

No writes locks, no read locks!!

12-CC-70

SNAPSHOT isolation Freie u-uv-_--mal.%?ﬁ&.lu

Lock based implementation

Let snapshot number of TAl be s
TAL: write (x)

if s <current version of x: abort
Some TA* modified x after BOT(TAL) and committed!

example: rl(y0) r2(x0) w2(x2) c2 r1(x0) wil

/ TA1 aborts

TA1 reads TA level consistent,
i.e. the version of x that was current
at BOT of TA1

else...

12-CC-71

SNAPSHOT isolation: Iocking == U-llwzlavtal-%.ﬁ&hlu

else: TA1 locks x 2PL if it wants to produce a new
version.
if x already (write) locked by TA* TAL waits until:
TA* commits = TAL aborts
else
TA* aborts = TA1 commits
else commit.

* No read locks needed

* Repeatable Read, but not Serializable.

« Compatible with update in place, if version reconstructed
from the log.

12-CC-72

e e . Freie Universil "?‘ A Berli

Serializability and versions Freie Unive ’“"Q_ﬁ&"“'

Disadvantage of snapshot isolation:
— not serializable in all cases

— Abort of a TA in case of w-w conflicts
Maybe waiting for the release of a lock would be
sufficient?

Generalized lock protocol with 2 versions only:

« only one TA can prepare a new version
= Standard lock protocol (2 PL)

« Writer wants to publish new version of x:
no reader of x should still be active.

12-CC-73

T 5| T
Multiversion CC: 2 versions (2VMVCC}™* ”""""'"““"é_ﬁs”"”

2 versions of each object x:
- a consistent one x; with commit time of last
modifying transaction t;as a timestamp
- awriter t; may prepare a second version x;, not
visible until commit of writing TA t;

Restrictions for 2VMCC:
« Never two writers at the same time on the same object
= only one new version can be prepared
» New version cannot be published, if a reader of the
(consistent) old version is still active

12-CC-74

Y (€ | T
2VMVCC Freie Universitit éﬁ Berlir

r1(x0) wil(xl) rl(z0) wil(zl) cl

r2(x0) w2(y2) r2(z1) c2

Suppose z1 = z0+x1: inconsistent — two different states of x in
the TA t, , read not repeatable —remember: only 2 versions

Delay the commit of t, until all readers of objects
written by t; (i.e. x, z) have committed:

r1(x0) wil(x1l) r1(z0) wil(zl) (delayed)cl
r2(x0) w2(y2) r2(z0) c2

12-CC-75

Multiversion concurrency Freie Ueive ““"Q_ﬁs"“'

Lock based MVCC ("MVCC2PL")

w(x): write lock x if not locked, else wait

r(x): read lock on x always granted for last
consistent version

c(x): acquire certify lock, if prepared version
of x is to become the current consistent version,
granted, if now reader or writer on x active.

Multiversion concurrency Freie Ueive ““"Q_ﬁs"“'

Two-version-2PL MVCC

has only one uncommitted version, one consistent
("current”) version because writes are incompatible
Readers benefit, not writers
- May be generalized to more than one uncommitted
- MVCC is most in practice

Deadlocks?

R w c
il)
R * + Compatibility matrix Read locks needed why?
+
c B Serializable?
12-CC-76 12-CC-77
Frete Universi r?" T Erele Universi r:f' Y
ZPL-MVCC Freie Ur m.aul.Qéﬁ&;.lu Update rep|aced by append Freie Ur m.aul.Qéﬁ&;.lu

x0,y0,z0 : consistent state of x,y,z
xi := value of x produced by TAi
Call sequence:
ri(x) w2(y) ri(y) wi(x) cl r3(y) r2(x) w2(x)c2r3(x)c3

T1 ri(x0) ri(y0) wi(x1) c1 t
T2 w2(y2) T2(XL)W2(X2) v c2
Y ;
T3 | r3(y0) r3é<1) c3
I yal i
C_lock for y not granted, wait until
R T3 finished.

Consistent version read, not the uncommitted y2!

The Postgres solution...
... is much trickier

* ... will be presumably analyzed in DB-Tech (winter term)

¢ MVCC also employed in non-DB applications

12-CC-79

. £ i N r:f' b
Summary: Transactions and concurrefey™ Hal"‘{ﬁ&'l“

Transactions: very import concept

Model for consistent, isolated execution of concurrent TAs
Scheduler has to decide on interleaving of

operations

Serializability: correctness criterion

Implementation of serializability:
concurrency control:

2-phase-locking, time stamping, multiversion cc ...and more
Strict 2PL restrictive, but employed in many DBS

Read-mostly DB has fostered MVCC, today in most
DBS Oracle, Postgres, SQL-Server and more...

see comprehensive overview of synchronization in DBS in the reader

12-CC-80

