
7. SQL 7. SQL –– Data Handling Data Handling

7.1 The query language SQL
- Search predicates
- Arithmetic expressions and functions in predicates
- Different kinds of join
- Output layout

7.2 Advanced SQL
- Subselects and Correlated subqueries
- Quantified expressions, SOME, ANY
- Grouping and Aggregation
- Transitive closure

7.3 Update, Deletion, Insertion and bulk load*

Lit.: Melton / Simon, Understanding SQP 1999, chap. 2,5,7; Kemper / Eickler chap 4,
SQL chapter in any book on DBS

(*) chap.6. Calculus Language: not discussed in class

07-DBS-SQL-2© HS-2010

SQL / DML: OverviewSQL / DML: Overview

Query data
– Interactively
– Embedded in host language

important in applications, next chapter

Insert, update, delete data

07-DBS-SQL-3© HS-2010

7.1 The Query Language SQL7.1 The Query Language SQL
SQL is relational complete
...but many additional query concepts compared to RA

Advanced search predicates on strings
e.g., find all cities starting with “Ber”

Arithmetics in expressions,
e.g., GNP / population for all countries

Grouping and predicates over sets
e.g., total GNP of EU countries

Recursion

07-DBS-SQL-4© HS-2010

Simple SQL Simple SQL SearchSearch predicatespredicates

Defined like Boolean predicates in RA and Calculus
Some syntax extensions

SELECT *
FROM Country
WHERE population BETWEEN 50000000 AND 70000000
AND GNP IS NOT NULL

• <attribute> BETWEEN <value1> AND <value2>
• <attribute> IS [NOT] NULL

07-DBS-SQL-5© HS-2010

Simple SQLSimple SQL SearchSearch expressionsexpressions
Simplified OR

Equivalent to
<attr> = <val1> OR <attr> = <val2> OR ...

More general case of a table constant:

SELECT Name
FROM Country
WHERE C_ID IN ('BRD','D','DDR')

SELECT Name
FROM Country
WHERE (C_ID, capital)

IN (('BRD','Bonn'),
('D', 'Bonn'),
('DDR', 'Berlin(Ost)'))

07-DBS-SQL-6© HS-2010

Boolean logic ...Boolean logic ...

.. is crucial:

SELECT Country.Name
FROM Country
WHERE NOT (capital != 'Berlin' OR
capital != 'Wien')

Result?

Row predicates with conjunctive primitives
a = <value> AND a =

<differentValue> will never have a non-zero
result.

07-DBS-SQL-7© HS-2010

RememberRemember……

All logical differences are big differences
(Wittgenstein)

Corollar:
All logic mistakes are big miscakes

not so big

t

07-DBS-SQL-8© HS-2010

33--valued logicvalued logic

NULL values
– comparison result may

be "unkown" if an
argument is NULL

• "unknown" result tuples
in any result set

– comparison only by
IS [NOT] NULL

(select Country
from Economy
where gdp >= 0
) intersect
(select Country
from Economy
where gdp IS NULL)

Result set : ∅

fut∧

f
u
t

fff
fuu
fut

or, not
?

07-DBS-SQL-9© HS-2010

ArithmeticArithmetic ,,functionsfunctions
in in searchsearch predicatespredicates and and moremore
Extensions of RA - Arithmetic expressions

May occur in simple predicates and target list

SELECT c.name,
e.gdp/c.population AS "GDP ($) per Person"

FROM Country c join Economy e
ON c.code = e.country

WHERE (gdp*1000000/population) < 500

Basically arithmetic expressions (over attributes and
values) allowed when attribute names allowed.

Result is NULL if any involved attribute is NULL

07-DBS-SQL-10© HS-2010

Simple Simple SQLStringSQLString searchsearch expressionsexpressions
String expressions

Simple form of regular expressions: LIKE
LIKE patterns:
% : any sequence of characters
_ : exactly one character

Regular expressions defined in SQL99*
<string> SIMILAR TO <pattern>

REGEXP_Like (<attr>, <pattern>) (Oracle)

SELECT Country.name , capital
FROM Country
WHERE capital LIKE '%co%'

NAME CAPITAL
-------------- --------
Russia Moscow
...

07-DBS-SQL-11© HS-2010

Simple SQL Simple SQL FunctionsFunctions
in in searchsearch expressionsexpressions
Built in functions

– Expressions may contain functions
– Many arithmetical and string built-in functions
– User defined functions on user defined types (see

below)

SELECT Country.name , capital
FROM Country
WHERE SOUNDEX(capital) = SOUNDEX
('Monakko')

NAME CAPITAL
------------ -------
Nicaragua Managua
Monaco Monaco

07-DBS-SQL-12© HS-2010

Simple SQL Simple SQL SearchSearch expressionsexpressions
More expressions

Sqrt(xCoord*xCoord + yCoord * yCoord)function (aexpr)

3 + 4, price - 2*discountarithExpr op arithExp

T.format, fname[qualifier.]columnname

7.5, 3.Constant

SUBSTRING(fname FROM 0 FOR 4)

TRIM (TRAILING ' ' FROM ' Hello ')

SYSDATE – date_of_birthDate value express.

UPPER (fname), LOWER(...)

SOUNDEX ('Meier') function (cexpr)
'The winner is: ' + fnamecexpr '+' cexpr

Arithmetic expressions

Character and Dateexpressions

example

07-DBS-SQL-13© HS-2010

DateDate--FunctionsFunctions
SQL date model based on timestamps with/out time zone,

types: timestamp, date, time (of day), interval.
SELECT bike_ID, year_Bought
FROM Bikes
WHERE
MONTHS_BETWEEN(SYSDATE,year_bought)> 24 ;

SELECT Bike_ID
FROM Bikes
WHERE TO_DATE('1.1.2009') > year_bought

Problem: compatibility, e.g. functions on time values
General issue:
Casting may result in not a well defined value
e.g. a time interval of one year and five month to seconds
(how many month with 30 | 31 | 28 days?)

07-DBS-SQL-14© HS-2010

NamingNaming

User defined type components
examples: Postgres

CREATE TYPE Coord AS (
longitude NUMERIC,
latitude NUMERIC)

CREATE TABLE City AS (
name VARCHAR(..),
coordinates Coord,

....

How to access components?

SELECT name FROM City
WHERE Coordinates.latitude

= 37.5
Does not work:
looks like path expression

SELECT name FROM City
WHERE (Coordinates).latitude = 37.5

Array types much more involved! See manual.

07-DBS-SQL-15© HS-2010

ConstructingConstructing JoinsJoins

Recipe for more involved join
Example: Find countries having cities with a population of 5,000,000

and more; list also city names and Province name and population.

J-Tab(...Country.code,
Country.name,....

.. Province.country,

.. Province.name,

.....
City.country, -- code
City.province,
City.name,
City.population,
.....

)

1. Construct a "wide table" by joining all "relevant" tables.
2. Apply selection and projection to this table.

07-DBS-SQL-16© HS-2010

SQL joinSQL join

SELECT co.name, ci.name, r.name, r.population
FROM Country co JOIN Province r

ON co.code = r.country
JOIN City ci
ON r.name = ci.province AND
ci.country=co.code

WHERE ci.population >= 5000000;

Example (cont.)

Tables "relevant" for query:
1. Those containing column used in projection or selection

Example: Country, City
2 Those needed to link tables of type 1.

Example: Province

07-DBS-SQL-17© HS-2010

Be careful with...Be careful with...
.. projection.

SQL> select * from r;

A B C
---------- ---------- ----------

1 2 3
2 2 4
3 3 4

SQL> SELECT r.a, s.b FROM r JOIN s ON r.c != s.b NATURAL JOIN t;

A B
---------- ----------

1 2
2 2
3 2
1 2
2 2
3 2

SQL> select * from s;

B D
---------- ----------

2 4
3 3

SQL> select * from t;

D E
---------- ----------

4 1
4 2

Correct result.

07-DBS-SQL-18© HS-2010

BUG BUG

QL> SELECT r.a, s.b FROM r JOIN s ON r.c != s.b NATURAL JOIN t;

A B
---------- ----------

1 2
1 2
2 2
2 2
3 2
3 2
2 3
2 3
3 3
3 3 wrong result!

10 Zeilen ausgewählt.

Elimination of column D
in table s results in cross
join instead of
natural join.

07-DBS-SQL-19© HS-2010

SQL / DML: joinsSQL / DML: joins
enhanced
SQL:1999

<tableName> NATURAL [INNER] JOIN <tableName>

SELECT name, name
FROM City c NATURAL INNER JOIN Province r;

Natural inner join

You should know what you are doing...
Example:

Result?

City (NAME, COUNTRY, PROVINCE, POPULATION..)
Province (NAME,COUNTRY, POPULATION,...)

07-DBS-SQL-20© HS-2010

SQL / DML: Simple queries with joinsSQL / DML: Simple queries with joins

Inner equi-join with attribute list

Example:

<tableName> [INNER] JOIN <tableName>
USING <attributList>

SELECT City.name, Province.name
FROM City INNER JOIN Province USING (country)
ORDER BY City.name;

Subset of common attributes

Strange (wrong!) result...
Explain output!

07-DBS-SQL-21© HS-2010

Symmetry of joins or tablesSymmetry of joins or tables

SELECT Country1, Country2
FROM Neighbor_of
WHERE Country1 = 'D' or Country2= 'D'

Problems with symmetric relationships

Example: Neighbor_of (Country1, Country2)
Wanted: list of neighbors of Germany.

Solves the problem...?
COUNTRY1 COUNTRY2
-------- --------
..
CS D
D NL
...

07-DBS-SQL-22© HS-2010

CASECASE
SELECT 'D ' ,

(CASE
WHEN n1.country1='D' THEN n1.country2
WHEN n1.country2='D' THEN n1.country1
-- Else for catch all, not needed here

END) AS "Neighbor-Country"
FROM Neighbor_of n1
WHERE n1.country1='D' OR n1.country2='D'

Simple solution in this case: set operator
(SELECT country2 as benachbart
FROM Borders
WHERE Country1='D')
UNION
(SELECT country1 as benachbart
FROM Borders
WHERE Country2='D')

07-DBS-SQL-23© HS-2010

CASECASE

Case expression in "target list" very useful.

SELECT Country.Name ,
GNP/population AS "GNP ($) per

Person"
...
throws exception if country.population = 0 (but not: NULL)

Can be avoided with CASE .

07-DBS-SQL-24© HS-2010

Outer JoinOuter Join

Natural outer join
<tableName> LEFT|RIGHT|FULL
NATURAL [OUTER] JOIN <tableName>

<tableName> LEFT|RIGHT|FULL [OUTER] JOIN <tableName>
ON <condition>

SELECT r.name, c.name
FROM Province r LEFT OUTER JOIN City c
ON (r.name = c.province AND r.C_ID = c.C_ID)

ORDER BY r.name

Outer join with condition

Example:

will find and output also Provinces without cities

07-DBS-SQL-25© HS-2010

Simple SQL: OutputSimple SQL: Output
Formatting the output

Different format, even HTML or other markup can be generated
in some systems

"Find title, DVD_id and format for all movies"

BREAK ON name
COLUMN name HEADING "Land" FORMAT A15
COLUMN capital HEADING "Hauptstadt"

SELECT c.name, r.name
FROM Country c JOIN encompasses e
ON c.C_ID = e.country
JOIN Province r USING (C_ID)

WHERE e.continent LIKE 'Europ%'
ORDER BY c.name ASC;

Don't repeat identical titles
Column formating

Aliases for columns

System dependent
This kind holds for
Oracle/SQL+

07-DBS-SQL-26© HS-2010

7.2 7.2 AdvancedAdvanced SQLSQL

Subselects and correlated subqueries
Using result relations instead of constants

Independent subqueries

SELECT name, country
FROM City
WHERE country IN ('DDR','D', 'BRD');

SELECT name, province
FROM City
WHERE province IN

(SELECT name
FROM Province
WHERE population > 5000000);

Independent outer
and inner SQL
block

Constant list

Query dependent
constants

07-DBS-SQL-27© HS-2010

AdvancedAdvanced SQL: SQL: SubselectsSubselects

Subqueries

SELECT name, code
FROM Country c JOIN City ci

ON c.capital=ci.name
AND c.province = ci.province

WHERE ci.population <

Find name of country, the capital of which has less inhabitants
than the capital of France.

(SELECT population
FROM City
WHERE name='Paris')

Wrong, if more than one result of subquery.
Needed: value quantifier – compare with all or is
there any?

ALL SOME [ANY]

07-DBS-SQL-28© HS-2010

Correlated Correlated SubselectsSubselects

Correlated Subqueries: block structure, variables accessed
in subordinate nested block

Subqueries can be avoided in most cases.
How in the example above?

Find country name, for which the capital is at the same time the
capital of a Province.

SELECT c.name, c.code, c.capital, c.province
FROM Country c
WHERE EXISTS
(SELECT *
FROM Province r
WHERE r.country = c.code AND r.name = c.province
AND r.capital = c.capital)

ORDER by c.name

07-DBS-SQL-29© HS-2010

Advanced SQL: EXISTSAdvanced SQL: EXISTS

NOT EXISTS extends the language

Find countries, the capital of which has a higher population than
all its Provinces (except the Province of the capital)

Could be expressed in predicate logic:
Find country etc. such that for all Provinces (except that of he capital)
the population is less than the population of the city.

Equivalent:
Find country etc such that not exists provinces different from

the capital's province the population of which is
equal or larger than the population of the countries capital.

07-DBS-SQL-30© HS-2010

AdvancedAdvanced SQL: EXISTSSQL: EXISTS

SELECT c.name, c.code, c.capital, c.province,
ci.population

FROM Country c JOIN City ci ON ci.name=c.capital
AND c.province = ci.name AND c.code=ci.country

WHERE NOT EXISTS
(SELECT *
FROM Province r
WHERE r.country = c.code AND c.province != r.name
AND r.population >= ci.population)

ORDER by c.name

07-DBS-SQL-31© HS-2010

Division and EXISTSDivision and EXISTS
Find countries which are members of all organizations, Germany is in.

SELECT DISTINCT country
FROM IsMember m1
WHERE NOT EXISTS (

SELECT * FROM IsMember m2
WHERE country = 'D' AND NOT EXISTS (

SELECT * FROM IsMember m3
WHERE m3.country = m1.country AND

m3.organization = m2.organization
)

)

Algebra expression?

07-DBS-SQL-32© HS-2010

Set operatorsSet operators

Find countries which belong to Europe and Asia.

... where continent = 'Europe' and continent = 'Asia'

SELECT country FROM encompasses
WHERE continent = 'Europe'
INTERSECT
SELECT country FROM encompasses

WHERE continent = 'Asia'

Set operators eliminate duplicates!
<set op> ALL does not.

07-DBS-SQL-33© HS-2010

Quantification and set operatorsQuantification and set operators

Example from above...

SELECT country -- not in Oracle
FROM IsMember m
WHERE NOT EXISTS(

(SELECT organization FROM IsMember
WHERE country='D'
)
EXCEPT
(SELECT organization FROM IsMember m1
WHERE m.country = m1.country
)

)

07-DBS-SQL-34© HS-2010

Table expressionsTable expressions

SELECT country FROM encompasses
WHERE continent = 'Europe'
INTERSECT
SELECT country FROM encompasses
WHERE continent = 'Asia'
)

SELECT name FROM country c
WHERE c.code IN (

Avoid subqueries, even if not correlated

07-DBS-SQL-35© HS-2010

Table expressionsTable expressions

(SELECT country FROM encompasses
WHERE continent = 'Europe'
INTERSECT
SELECT country FROM encompasses
WHERE continent = 'Asia'
) euroAsia

WHERE euroAsia.country = c.code

SELECT name FROM country c,

table expression
in from list

07-DBS-SQL-36© HS-2010

AggregationAggregation and and GroupingGrouping

Aggregate (or set) functions

fA : table -> value, where A is some Subset of Σ(table)

Aggregate functions are table functions, i.e.
defined on tables or subsets of tables, not single
rows

COUNT, SUM, AVG, VARIANCE,MIN, MAX are standard
functions sometimes also statistical functions
(e.g. variance)

07-DBS-SQL-37© HS-2010

Using Using aggregrationaggregration

SELECT to_Char(AVG (population),'999999999999.99'),
to_char(VARIANCE(population), '999999999.99'),
MAX(population)

FROM country

Target list: do not mix aggregation and attribute values:

SELECT name, MAX(population)
FROM country

Syntax error:
00937. 00000 - "not a single-group group function"

07-DBS-SQL-38© HS-2010

Extended SELECT listExtended SELECT list

Aggregate functions allow for SELECT-Blocks in target list
- provided one result value is guaranteed ("scalar expression").

"Total population of provinces per country":

SELECT code, name , (SELECT sum(population) AS EWZ
FROM Province r
WHERE r.country=c.code)

FROM Country c

Correlated - not a surprise....

07-DBS-SQL-39© HS-2010

AggregationAggregation

SELECT COUNT(*)
AS "Number of Provinces"

FROM Province r

How many provinces has China: easy

Table with number of provinces per country: no way
...
IND 32
IL 5
CL 1
D 16
...

?

WHERE c.code = 'D'

07-DBS-SQL-40© HS-2010

Grouping of a tableGrouping of a table

...
USA MI
USA MN
USA MO
Venda V
Vanuatu VAN
Vietnam VN
Volksrepublik_China SHA
Volksrepublik_China SHG
Volksrepublik_China SHX
...

... GROUP BY country.name

07-DBS-SQL-41© HS-2010

GroupingGrouping

Def.: Grouping partions a table into groups
(or subtables) in such a way, that each group has
equal values column wise in all grouping attributes
GROUP BY <attr1>,...<attrn>

The result list of a grouped table may only contain
grouping attributes or aggregations over other
attribute of the groups.

07-DBS-SQL-42© HS-2010

GroupingGrouping

SELECT c.name, c.code, COUNT(*) AS noProvinces
FROM Country c JOIN Province r

ON c.code=r.country
GROUP BY c.name, c.code

USA USA 51
Vanuatu VAN 1
Venda V 1
Venezuela YV 1
Vietnam VN 1
Volksrepublik_China VRC 27

How to find the country with
- the maximum number of Provinces ?
- or those with more than one Province?

07-DBS-SQL-43© HS-2010

HavingHaving

Group based selection:

Qualified
groups

Having
Predicate

Grouped table

Result table

Aggregation

SELECT c.name, c.code, COUNT(*) AS noRegs
FROM Country c JOIN Province r ON c.code=r.country
GROUP BY c.name, c.code
HAVING COUNT(*) > 1

07-DBS-SQL-44© HS-2010

HavingHaving
Predicates in having clause:
defined only on grouped columns or aggregated by
a set function
SELECT c.name, c.code, SUM (ci.population) AS
"Stadtbevoelkerung"
FROM Country c JOIN City ci ON c.province =

ci.province AND c.code=ci.country
GROUP BY c.name, c.code
HAVING SUM(ci.population) > 0

– "No HAVING without 'GROUP BY' "
– Attributes in Target list must be group attributes

07-DBS-SQL-45© HS-2010

Row and table predicatesRow and table predicates

Row predicates: evaluated for each individual row
Table predicates: evaluated on tables or groups.

" A group / table is qualified or not"

No aggregation in row predicates: MAX, COUNT() etc
do not make any sense.

Aggregation mandatory for table predicates:
COUNT(*) > 2, MAX(population)

Brain teaser: can table predicates be expressed by row predicates?

07-DBS-SQL-46© HS-2010

Using group byUsing group by

For readability, we introduce a VIEW:
CREATE VIEW NoReg AS (
SELECT c.name, c.code, COUNT(*) AS nofRegs
FROM Country c JOIN Province r ON c.code=r.country
GROUP BY c.name, c.code)

SELECT c.name, c.code, c.capital, c.province, ci.population
FROM Country c JOIN City ci ON ci.name=c.capital

AND c.province = ci.province AND c.code=ci.country
JOIN NoReg n on n.name = c.name AND n.code = c.code

WHERE n.nofRegs > 1 -- now a row predicate!
AND ...– - WHERE EXISTS..

N...

Standard step: construct a joined table with all the
information needed. Join previous expression with NoReg

07-DBS-SQL-47© HS-2010

ExplExpl. cont.. cont.

SELECT c.name, c.code, c.captal, c.province, ci.population
FROM Country c JOIN City ci ON ci.name=c.capital

AND c.code = ci.province AND c.code=ci.country
JOIN NoReg n on n.name = c.name AND n.C_ID = c.C_ID

WHERE n.nofRegs > 1 -- now a row predicate!
AND NOT EXISTS

(SELECT *
FROM Province r
WHERE r.country = c.code AND c.province != r.province
AND r.population > ci.population)

ORDER by c.name

NAME C_ID CAPITAL R_ID POPULATION
----------------- ---- ---------- ---- ------------
Daenemark DK Kopenhagen DK 1358540
Grossbritannien GB London ENG 6754500
...
Volksrepublik_China VRC Peking PEK 9900000

11 rows selected

07-DBS-SQL-48© HS-2010

AdvancedAdvanced SQLSQL

Quantifiers and counting (in finite sets)

select x
from R
where 0 <

(select count(*) from S...)

select x
from R
where EXISTS

(select * from S...)

≡

SELECT DISTINCT country
FROM IsMember m1
WHERE 0 =(

SELECT Count(*) FROM IsMember m2
WHERE country = 'D' AND NOT EXISTS (

SELECT * FROM IsMember m3
WHERE m3.country = m1.country AND

m3.organization = m2.organization
)

)

07-DBS-SQL-49© HS-2010

GROUP BYGROUP BY
A realistic example1

product (product_id, name, price, cost)
sales (product_id, units, date, ...)

"Find for each product the profit made within the last 4 weeks
if less than 500 $ "

1 from the Postgres manual

SELECT p.product_id, p.name,
(sum(s.units) * (p.price - p.cost)) AS profit

FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) < 500;

07-DBS-SQL-50© HS-2010

SQL / DML StructuringSQL / DML Structuring
Temporary tables

When inconsistency is not an issue, temporary tables
make sense

No assignment in SQL – applicative language

Instead: Declare temporary relation :
create temporary table myTmp (....)

and assign a value by means of an INSERT
statement:

insert into mytmp
(select x,y,z from R where…)

Temporary tables are local snapshots, they are
"dropped" at the end of a session.

SQL -3

useful
variant of
insert

07-DBS-SQL-51© HS-2010

StructuringStructuring

Consistency thread in multiuser mode!
Structuring
Subquery factoring / local definition

WITH r AS (
select m.title, m.m_id AS x, tt.m_id
from movie m, DVD tt
where m.year > to_date(2000,'YYYY'))

SELECT DISTINT r.title, t.DVD_id
from r, DVD t
where r.x = t.m_id;

Compare let in Haskell

Local definition

07-DBS-SQL-52© HS-2010

Transitive closureTransitive closure
Representing a directed Graph
Example: course prerequisites

Represent graph by a set of nodes and a set of edges

ALP 1

ALP 2

ALP 3

ALP 4

DBProj

DBS

RS

RO

SWT

TI

MafI 1

MafI 2

07-DBS-SQL-53© HS-2010

Transitive closureTransitive closure

Example:
enhanced
SQL:1999

Find courses required for SWT

-- Nodes
CREATE TABLE Course(
lnr int primary key,
name varchar(20));

-- Edges
CREATE TABLE Requires(
pre int references course(lnr),
suc int references course(lnr),
constraint req_pk primary key(pre, suc));

07-DBS-SQL-54© HS-2010

ANSI SQL: Transitive closureANSI SQL: Transitive closure

ANSI SQL (SQL 99) syntax for recursive traversals

WITH RECURSIVE PreCourse(pre, suc)
AS (SELECT pre,suc FROM Requires r WHERE pre

NOT IN (SELECT suc FROM Requires r1)
UNION

SELECT pre,suc
FROM Requires r, PreCourses p
WHERE p.suc = r.pre
)

SELECT p1.suc , c.name
FROM preCourse p1, course c
WHERE p1.suc = c.lnr;

07-DBS-SQL-55© HS-2010

Recursive processingRecursive processing

Querying a table recursively
(1) Construct the table which is recursively defined

Example: PreCourses (pre,suc) which is
the transitive closure of the Requires table

(1a) Start with the "base" relation Requires
Requires → PreCourses0

(1b) construct Precoursesn+1 :
PreCoursesn union [all]

additional transitive dependent tuples using
Requires and PreCoursesn

(2) Use constructed table (PreCourses) for querying

07-DBS-SQL-56© HS-2010

Termination?Termination?

The (iterative!) algorithm which constructs the transitive
closure, terminates, if there are no new tuples to be
added:

PreCoursesn = PreCoursesn+1

Crucial: The result set of the query defining the "delta"
must eventually be empty!

In the example:
SELECT pre,suc

FROM Requires r, PreCourses p
WHERE p.suc = r.pre

07-DBS-SQL-57© HS-2010

Oracle: different Oracle: different mechanismmechanism

Transitive Closure in Oracle: CONNECT

LNR NAME
1 ALP I
2 ALP 2
3 ALP 3
4 ALP 4
5 RS
6 RO
7 Theory
8 SWP
9 DBS
10 DBProj
11 SWT

Courses

SELECT l.name
FROM Course l, requires r
WHERE r.suc = l.lnr
START WITH pre = 1
CONNECT BY PRIOR suc = pre;

PRE SUC
---------- ------

1 2
2 3
3 4
3 8
5 6
8 9
6 9
7 9
8 11
6 11
7 11

11 10

Requires

NAME

ALP 2
ALP 3
ALP 4
SWP
DBS
SWT
DBProj

1. Only ONE path ("start with..")
2. from leaf to root: exchange

suc and pre

07-DBS-SQL-58© HS-2010

SQL / DML: OverviewSQL / DML: Overview

Query data
– Interactively
– Embedded in host language

important in applications, next chapter

Insert, update, delete data

07-DBS-SQL-59© HS-2010

7.3 SQL / DML: Update operations7.3 SQL / DML: Update operations

Delete, Insert, Update
The easiest way to ruin your company:

deletes all rows from Customer relation

In general, the rows to be deleted are specified by a
(search) predicate:

Very different from deleting metadata:

DELETE FROM Customer;

DELETE FROM <tablename> WHERE <predicate>;

DROP TABLE Customers; DROP SCHEMA my_database;

07-DBS-SQL-60© HS-2010

SQL / DML: UpdateSQL / DML: Update
General form (simplified) for changing values :

• Note: without a predicate all rows will be changed

• Primary key predicate for update is very common
Update Customer SET email = 'me@acm.org'
WHERE mem_No = 47.1; /* primary key */

Update Rental SET until_date = SYSDATE
WHERE bike_id = 23-7789 AND c_id = 3315
AND until_date IS NULL;

UPDATE <tableName> SET
<attr> = <value> [, <attr> = <value>]0..*
WHERE <searchPredicate>

07-DBS-SQL-61© HS-2010

SQL / DML: Insertion SQL / DML: Insertion

INSERT INTO Customer
VALUES (011, 'Müller', 'Tina', NULL,NULL,NULL);

INSERT INTO <tableName> VALUES
[<value> [,value]] -- for each attribute

07-DBS-SQL-62© HS-2010

Insert (2) Insert (2)

Incomplete form with attribute and value list:
– Order of attributes / values independent from schema
– Attributes not in value list get value NULL

INSERT INTO Customer
(name, mem_no) VALUES ('Müller', 012);

INSERT INTO <tableName>
(attribute [,attribute]0..n] VALUES
(<value> [,value]0..n)

07-DBS-SQL-63© HS-2010

SQL / DML: Insert dataSQL / DML: Insert data

Insertion using a query

Bulk insertion
large file of INSERT statements may be inefficient
insertion of large data sets by specific DB tools

Postgres: COPY command to and from files (e.g. cvs)
Oracle and others: bulk loader

not standardized

INSERT INTO Foo (select * FROM Tmp)

Result set of query must have same type signature
as table inserted to.

07-DBS-SQL-64© HS-2010

SQL / DML: bulk loadSQL / DML: bulk load

Bulk load: inserting many data
Example:

Oracle Syntax:

sqlldr <user>/<password> <controlfile>
<logfile> <badfile> <datafile>

CREATE TABLE loadtest(
name varchar(20),
num number(10,2));

'XYZ' , 4
'YZX' , 5
'ZXY , 6

'XYZ' , 4
'YZX' , 5
'ZXY , 6

loadtest.dat

load data
infile 'loadtest.dat'
badfile 'loadtest.bad'
discardfile 'loadtest.dis'
APPEND INTO table loadtest
fields terminated by " , "
optionally enclosed by " ' "

(name char, num integer external)

load data
infile 'loadtest.dat'
badfile 'loadtest.bad'
discardfile 'loadtest.dis'
APPEND INTO table loadtest
fields terminated by " , "
optionally enclosed by " ' "

(name char, num integer external)

loadtest.ctl

07-DBS-SQL-65© HS-2010

SummarySummary

• SQL: THE interlingua of data management
• Differences (standard, systems) considerable
• Eventually convergence towards SQL 3
• Set manipulation as dominating operation
• Set specification in a declarative way
• Grouping: frequent operation
• Many language enhancements in SQL 3

(transitive closure, structuring)
• Interactive language: embedding into host language to be

discussed

