5 The Relational Data Model.
Algebraic operations on tabular data

5.1 Foundation of relational languages

5.2 Relational Algebra operations

5.3 Relational Algebra: Syntax and Semantics
5.4. More Operators

5.5 Special Topics of RA

6 The Relational Data Model: Logic foundation of Data

Manipulation Not presented in class!

Kemper / Eickler: 3.4, 4.6+7; Elmasri /Navathe: chap. 74-7.6,
Garcia-Molina, Ullman, Widom: chap. 5, D. Maier Theory of RDB (Online Book -> Lit.)

Context

© HS-2010

Part 1: Designing and using database

Freie Universitat (138 o))

Database Design:
- developing a relational

database schema

Design:
- formal theory

Data handling in rela-:
tional databases
-Algebra, -Calculus, SQL/DML

Using the Database
from application progs

Physical Schema

Part 2: DWH, IR .. Transactions

07-DBS-RLang-2

5.1 Foundation of relational languagess universit sl

Data Model:

Language for definition and
handling (manipulation) of data

Languages for data handling:

— Relational Algebra (RA) as a semantically well
defined applicative language

— Relational tuple calculus (domain calculus):
predicate logic interpretation of data and queries

— SQL / DML (‘Sequel') — based on RA and calculus

SQL: very important in practice

© HS-2010 07-DBS-RLang-3

Berlin

Relational Languages Freie Universitit ([
Goal of DB language design:

Simple and powerful expressions for querying a
database

Language should be declarative ("descriptive")

Historically: “Make query formulation ‘as easy as in natural
language’ “

More serious: Queries should be independent of
representation of data and implementation aspects
(Codd's principle).

© HS-2010 07-DBS-RLang-4

Berlin

Re | at| on al Al g o b Fa Freie Universitat

Algebra objects:

Relations (tables)
R,(a,,...,a,), R,(b,,...,b,,) over domains al, bj,..

Algebra operators:

Operators : transform one or more relations into a relation:

Relational Algebra: only unary and binary operators

© HS-2010 07-DBS-RLang-5

.1%ijBean

Relational Algebra Freie Universitit (fi

City (name’'r_id popul ..)
Oslo .. 1.31
Berlin B 3.47...
Vienna .. 957

Country (c_id r.i1d capital..)
"GER®" "B" Berlin
"AU" "V* Vienna

ame and population of capitatof 'Germany

NAME POPULATION

Berlin 3472009

© HS-2010 07-DBS-RLang-6

Berlin

Basic Operations informally (from chaptefraie Universitit (e

Projection [N\ |/
Selection e

AMMMMIMIDIMDIDIdDMINKNL \
Union - \\
Difference /////

///// ""V// / \\\\\W
//////// 7/////// \\\\\\\\j\\\\\\\\

ons2010 (ReENaming) 07-DBS-RLang-7

Cross Product 27
//////// %///////

.

i

Relational Algebra Operators Freie Universitit ([

{ Projection m,
(Extended) Cross product x
Selection o,
Union U,
Set difference \,
Renaming p }

IS a base of relational operators.
Other operators like join (<1') can be expressed
by wo,p, %X, U

All operators can be expressed in SQL

© HS-2010 07-DBS-RLang-8

Berlin

5.2 Relational Algebra operations freie Universitst (e

Basic terminology (rep. from above)
Universal set of attributes A, a, €A has domain D(a,)

Relation Schema: named n-tuple of attributes
RS =R (al,...,an), {al,...an} c A

Schema operator X applied to relation R results In
the type signature of R: (R) =R,

Relational Database Schema: set of relation
schemas

Database Relation R: subset of D(a;;) X ...X D(a;,)

© HS-2010 07-DBS-RLang-9

Berlin

P rOj ection Freie Universitét : __
Let %(R) = B’, BB’ -
Projection g (R) of R on B:

Set of rows from R with the columns not in B eliminated
2"

project

T

_

_

N

No duplicates in g (R) (in theory!)

Def.: ng (R) ={rrestrictedto B |r € R}
={r' | there is a tuple r € R such that
I’ is the restriction of r to the attributes in B}

© HS-2010 07-DBS-RLang-10

I~ rOj ection (2) Freie Universitit \ ’

Properties of projection:
* |R[2 [mg(R)], B < %(R)

B contains akey of R = |ng (R)| = |R|

Useful for estimating the size of query results
Important for optimization.

SQL equivalent:

SELECT DISTINCT by, b,,...b, FROMR

© HS-2010 07-DBS-RLang-11

Extended Cross Product X

Freie Universitat (.. 'f.,:
% Ly

Def.: (Extended) Cross product R X S =
{(@i,...an,bl,....om) | (al,...,an) € R, (b1,...,bm) € S}

R (al a2) S (bl b2)
1 "A" 3 A"
— 5 -7 1 “g"
SQL equivalent:
T ((al , a2) (b1 Bb2))) SELECT ...
_ 1 “"A") 3 "AY FROM R,S
G "Z°) B TAY) SELECT ...
(1 "A") (1 "B") FROM
G "zZ°) (1A T"BY) R CROSS JOIN S

© HS-2010

07-DBS-RLang-12

Berlin

Renamin gp Freie Universitat ,.

Def.: Renaming
Attributes: If Z(R) N 2(S) 1= &

P <attrname> « <newAttrname> (<re|name>)

Relations :

P <newname> (<relname>)

R (al a2) S (bl a2)
1 "A* X 3 "A*
5 “Z" 1 "B*

2 (P a2 b2 (S)) =1{bl, b2}
Dot notation R.a2, S.a2 or explicit renaming

© HS-2010 07-DBS-RLang-13

R enam | N g Freie Universitat

P <newname> (<rélname>) |
Relation <relname> is renamed to <newname> In the

context of expression

P <attrname> « <newAttrname> _(<re|name>) |
Attribute <attrname> of relation <relname> is renamed

to <newAttrname> in the context of expression

T sub.name (GQ (c p (Employee 2< (Psyp (Employee)))))
where P = "Employee.name = “"Miller™ "

Q "Sub.boss = Employee.i1d ™

SELECT ... FROM Employee, Employee Sub

WHERE ...

© HS-2010 07-DBS-RLang-14

Set operations

r

(al az2)
1 "B
) "AT
6 "B*”

% ; oy oey [N 1
Freie Universitat Gl

’ | Berlin

(al
“p-
IBI

a2)
2
5

Def.: R and S are called union-compatible
If the domains of X (R) = X (S)

R, S union-compatible,

then set union and set difference

RuSand R\S as defined on mathematical sets

© HS-2010

SELECT

FROMR ...

{UNION | EXCEPT| INTERSECT}
SELECT ... FROM S ...

07-DBS-RLang-15

Selection o Freie Universitat

"Find cities with population more than 1 Mill .

_

Selection of tuples from a table R according
to a predicate P defined on R

Select P

Def.: Selection o; (R)
Row predicate P:: R — {true, false}
op(R) ={r| reR, P(r) = true}

© HS-2010 07-DBS-RLang-16

& \1‘m,, %
Pl’ed icates Freie Universitat i vﬂ

Row predicates:
Inductively defined by primitive predicates
and boolean operators and, or not

Def.. Primitive (simple) predicates

Let a, b be attributes, w value from dom (a)
abb and abw are primitive predicates
where 0 € { =, =5, <, <=, >, >=}

Primitive predicates compare
either an attribute and a value
or two attributes

© HS-2010 07-DBS-RLang-17

Berlin

Row predicates Freie Universitit (o
Syntax for (row) predicates

() Primitive predicates are predicates
(i) If Q, Q' are predicates,
thenQ A Q' ,QvQ and - (Q)
are predicates
(i) Operator preference and brackets as usual
(iv) There are no other predicates

"Find countries with more than 5 Mill population
and GNP <= 500

© HS-2010 07-DBS-RLang-18

Selection of rows Frefe Universitit)

Note:

Selection operator selects the row with all attributes:
Z(R) =Z (o5 (R))

Size of result depends on selectivity of P

selectivity :=|ocp(R)| / | R]
Important for optimization

SQL equivalent (but dupl.):

SELECT ... FROMR Note:

WHERE <row predicate P > SQL block allows
to combine
T, X, O

© HS-2010 07-DBS-RLang-19

Combining operators Freie Universitat
Country(C _1d,name, ... ,population, ..)

'Find Countries which only consist of its capital and the population > 10000’
(Monaco is an example, Vatican not)

N

Select P +Proj.

—_—

N

= Select Q /
Z - L~ .

Country City

Toane (0 p (0 o C country X City))
where Q = "population > 10000 "

-

P = "capital = City.name A
Country.pop = City.pop A.. A

SELECT Country.name FROM Country, City
WHERE C id = City.C id

and capital = City.name and R_id = City.R _id
and Country.population = City.population
and Country.population > 10000 5-RLang-20

S Q | 99 syn tax Freie Universitat \ 5 - ”

SELECT Country.name
FROM Country JOIN City ON C id = City.C _Id
and capital = City.name

and R_id = City.R_id

WHERE Country.population = City.population
AND Country.population > 10000

© HS-2010 07-DBS-RLang-21

b\ <
Lo \

5.3 Relational Algebra: Syntax and Semanftidsniversitat Berlin

Syntax of (simple) Relational Algebra defined inductively :
(1) Each table identifier is a RA expression

(2) pa(B), ps.y (A) are RA expressions where
A B table identifiers, s, v attribute identifiers

(3) If E and F are RA expressions then

np(E), cp(E),E X F,EUF, E\Fare RA expressions (If
union-compatible etc.)

where D c X(E)
(4) These are all RA expressions

© HS-2010 07-DBS-RLang-22

Semantics of Relational Algebra Freie niversitit ({4l

val is a function which assigns to each relational algebra expression a

result table:
val (RY) = R
"The value of a relation name is the relation (table)"
val ('t (E)") = T (val (B))

where T is some unary rel. Operation like 1

"The value of an unary relational operator applied to an
relational algebra expression E is the result of applying the
operator to the value of E "

val(E® F') = val (E) o val (F)

where ® is some binary operator like X

"The value of an unary relational operator applied to a
relational algebra expression E is the result of applying the
operator to the value of E"

© HS-2010 07-DBS-RLang-23

Berlin

Remarks on RA and SQL Freie

e Rewrite rule

og.p(R) = G0 (cp(R))
implicitly used for SQL expression:

SELECT.. FROM .. WHERE P (WH Q)
does not conform to SQL syntax

 RA results are sets (relations),
SQL results are bags (duplicates allowed)

To eliminate duplicates write:

SELECT DISTINCT ... FROM...

WHERE ...P AND Q ...

© HS-2010 07-DBS-RLang-24

Berlin

R enam | N g Freie Universitat ,f

Renaming , why?

Example: Employee(1d, name, boss, ..)

Find subordinates of “"Miller-

T name Op (O e) X Employee)))
where P = name = "Miller® ™

Q=" ; Employee.id

RA is a declarative language: a name denotes
the same relation / attribute within one expression

© HS-2010 07-DBS-RLang-25

Evalution example: one table — two r@lesiversitit ({3} erlin
Sub
Employee . i
id name boss id name boss
001 Abel NULL >< 001 Abel NULL Psub (Employee)
002 Bebel 005 002 Bebel 005
004 Cebel 005 004 Cebel 005
005 Miller 001 005 Miller 001
001 1
006 Debel 001 006 Debel Re namin g
Employee Sub
id name boss id name boss
001 Abel NULL 001 Abel NULL T
001 Abel NULL 002 Bebel 004 name
002 Bebel 005 001 Abel NULL
002 Bebel 005 002 Bebel 005
|
005 Miller 001 001 Abel Null
005 WIltteT 00T 002 Bebel 005 GP
oo§ Miller 001 004 Cebel 005 9]
005 VIiTTer 00T 005 VITTer 00T Q
005 Miller 001 006 Debel 001
006 Debel 001 005 Miller 001
006 Debel 001 006 Debel 001

© HS-2010 U7-DBS-RLang-26

Berlin

5.4 Relational Algebra: More Operatsgimiversit sl

Some operation sequences occur frequently
= define compound operators

Def.: Join (6-join)
R, Srelations, R [S
P

={@,, ...a,, by,...b,) | P(a,,...a,,b,,...0,,) is true}
=op (RXYS)
where P is a (boolean) predicate composed of
primitive predicates of the form
abb,acX(R),beX2(S),0e{= # <, <= >>=}
(P Is the join predicate)

© HS-2010 07-DBS-RLang-27

Relational Algebra Join Free Universitt el) Berti
R =< S = 1A213A
R.a<S.c A R.b=S.d 2 A213A The result usually
R(a b c) S(a c d) does not have a
1 A2 1 3 A name
2 A2 2 2 B
3C1 12C¢C
Note: exactly the same as
taking the set of all pairs of
RXs L1A213A R and S rows and checking
1A2228B the predicate subsequently
1A212C
2A213A SELECT ...
2A2228B
S5 A2 12 C FROM R JOIN S on (R.a<S.d)
3C113A AND (R.b=S.d)
sc1228 WHERE ...
3C112¢C

© HS-2010

07-DBS-RLang-28

. !
?-5 7 \

I
)5

QBerﬁn

Relational Algebra : more operators Freie Universitait (/| s

Equijoin: equality comparison

— Most important type of join: all primitive predicates in
P compare equality of column values of two rows at

atime: P=ARX=SYy ,{x}c Z(R),{y}c Z(S),

— Implements the "values as pointers” concept of RDB
for foreign keys, but is more general.

Example using foreign key: Find Country name title of region
having R_id = 'VAR'
T hame (Country o R_id='"VAR' (Region))

c_id=c_id

© HS-2010 07-DBS-RLang-29

Berlin

Relational Algebra: renaming attributeisumversitﬁta.,

— Renaming required, if identical column names

— No canonical projection of columns if columns
are redundant

R(X, vy, 2) S(x, vy, zY)
1 a 11 /7 a 23
5 b 12 6 ¢ 15 (R s) =
6 a 12 9 a 3 Ry =Sy

1 a 11 7 a 23
1 a 11 9 a 3
6 a 12 7 a 23
6 a 12 9 a 3

© HS-2010 07-DBS-RLang-30

Relational Algebra: Natural jOin Freie Universitat H

S5 V) Berlin
A

Def.: Natural Join R S:

equijoin over all literally identical column names

of Rand S and projection of redundant columns. Join
predicate implicit.

R.a, R.b, R.c, S.d
R(abc) S(acd \\ | //
1 A 2 1 3 A 2 A2B
RI-l's = 1 45¢
2 A 2 2 2 B

3 C 1 1 2 C

RIS = myryuxs (0 (RXS))
where P = /A R.X = S.X, X € Z(R) n Z(S)

SELECT ... FROM R NATURAL JOIN S

© HS-2010 07-DBS-RLang-31

Relational algebra: outer join Freie Universitst (2

Motivation: only tuples of S participate in a join
R 1 S, which have a "counterpart” in R.

Customer(c no,name,f name, zip, city)
Phones (phoneNo, c nho)

"Print telephon list of customers"

T name, phoneNo (Customer p< Phones)

Customers without phoneNo will not appear

© HS-2010 07-DBS-RLang-32

Vi Berlin

Relational Algebra: outer join Freie Universitt (il

Left outer join R S
P
Includes (r, NULL,...NULL) —if there is no join partner forr e R

a b c X acd
1 A2
Ra<ScA Rb=sd L 3A = 1A213A
2 A2 5 5B 2A213A
3C1- - -
S el 1 2C
Def: R W S =

P
R S U {(y-...r,, NULL,,...NULL)| (ry,...r;,) € R and
P forall (s,,..,.s,) € S: P (ry,...I,,, S1,..S,,) = FALSE }

Outer join typically extension of equijoin

© HS-2010 07-DBS-RLang-33

Relational Algebra: outer join

Right outer join R [X[S

Includes (NULL,...NULL, s) — if there is no join partner fors e S

ab c

1 A2
2 A2
3C1

XL

R.a<S.c A R.b=S.d

acd

13 A
2 2B
1 2C

Full outer join: union of left and right outer join

1 A2
2 A2
3C1

© HS-2010

R.a<S.c A R.b=S.d

13 A
2 2B
12¢C

. 1A213A

2A213A

- - -228

- --12¢C
1A213A
2A213A
3C1---
- - -228
- --12¢C

07-DBS-RLang-34

Freie Universitat ,@) ';.f; Berlin

Berlin

Relational Algebra: More operators Freie universitst (il

Def.. Semjoin
R <S = II Z(R) (R XIS)

Left semijoin is the subset of R, each r of which has
a corresponding tuple s from S in the join.

Typically extension of equijoin or natural join
R(a b ©)

X S(a c d) (a b ©)

1A 2

, », Ra=ScA Rb=Sd 13A | = 1AZ2
2 2 B

3¢C1 Lo e

Right Semijoin defined symmetrically :

© HS-2010 07-DBS-RLang-35

Relational Algebra: Base operators freie universicst f

Base
Set of operators which allow to express all other operators

Relational operators
T, o, X ,\ andu form a basis of relational
algebra operators

Means: every RA expression may be expressed only with
these operators

Example: R4S =ocp(R XYS)
P

© HS-2010 07-DBS-RLang-36

S

. ey (& |
Freie Universitat H
4

Some rewrite rules for RA

)
N\

Properties of selection and projection
op(0g(R)) =0q(op(R))
cp(op(R)) = ocp(R)

60.p(R) =o0qEp(R)=0qg(R)N op(R)
cqvr(R) = GQ(R)U cp(R)
c_r(R) = R\ op(R), If P(r)defined for all r (no NULL!)

fXcYc2(R) then ny(n,(R))=mn(R)
if X, Y € Z(R) then ny(ny(R)) = ntx Av(R) = Tty (mx(R))
attr(P) < X c Z(R) then ny(c p(R)) = o p (7,(R))

where attr(P) denotes the set of attributes occuring in P

© HS-2010 07-DBS-RLang-37

Relational Algebra operator trees Freie niversitit (il

Algebraic Optimization
— Evaluation of RA expressions in canonical form
T(0 p (R xRy, x ...x Rp))
IS very inefficient

— How to speed up evaluation of RA (and SQL)
expressions?

— Example: Two tables R and S with n and m tuples
Worst case complexity of :

G p (RS)
IS O(m*n)
— Interchange of select and join may result in O(n+m)
time Op (R) "' S depending on the join algorithm

© HS-2010 07-DBS-RLang-38

P 77w

B SOL Explain-Plan GEO_X@ORAXINU_XINU.FAM-SCHWEPPE.NET

o) x|
SELECT DISTINCT mountain.neme, city.name, city.c_id, city.r_id -

E FROM mountain, city, geo_mountain

— Wi e gl:u_muu.uucuu.l:_id = 51!

== AND mountain.name = geo_mountain.mountain

ANl (mountain.latitude - city.latitude) ¥ jmountain. latitude -

-— city.latitude)] + [(mountain., longit..__ ooy longitude)] * O

= nountain. longitude - city. longitude)] = (SELECT nin((m.latitude -
L= city.latitude)] * |

— w.latitude - -
e

%=

E 13 :,__g

SORT (UNIQUE)
?
FILTER
EXGH e
MESTED LOOPS SORT (GROLP BY)
RETE JE REE
MESTED LOOFS GEOQ_X.CITY MESTED LOOPS
’///Q\ TABLE ACCESS (FULL)
1) Ig])] ,§| &) —%])] Ig}
GEOQO_MGEQ_MOUNTAIM GECQ_X MOUMNTAIN GEO M MOUNTAIM GEQ_®.CITY
TABLE ACCESS (FULL) TABLE ACCESS (BY INDEX ROWID) TABLE ACCESS (BY INDEX ROWID) TABLE ACCESS (FULL)
v})
2)% 7
GEO_¥.5YS_C004494 GEO_M.SYS5_C004494
INDEX (LINIQLIE SCAN) INDEX (UMIQLIE SCAN) =
Dieser Schritt des Flans gibt diese Amaeisung als SELECT-Anweisung an.

OSIITIT
IS I
()
G

Relational Algebra: table predicatesfreie niversitit

VERST

Row predicates:
P defined over rows (or pairs of rows)

Table predicates

Example: find all countries which are neighbors of all
european Countries with population more than 78 Mill

Cannot be answered by comparing individual rows

Predicates with universal quantifier are table predicates

e.g. Find y,such that P(x) is true:
P(X) = Vx (PopGT70MillEurope (X) = (Q(X,Yy,))

Q(X,y) = X is neighbor of y
» EXpress table predicates with base operators?

© HS-2010 07-DBS-RLang-40

SIS 8
2 A)

{

T
"\‘_)

TR ﬂr g Berlin

Relational Algebra: Division Freie Universitiit ([

Course(id, title,semester)

T = Course_Stud(cid,matr#)

ALPA 77 F = nid(csmwwm Course(id, title, semester))
PSem 77 ALP4 B4
SW 55 DBS B4
SWT 12 SWT B4
Result: 77
SWT 7 PSem B4
ALP4 25
DBS 7 Find MatrNo of students who take all courses
DBS 12 offered for semester B4.

Relational Division
Informally T . /. F is the set of all tuples r of T projected on
attributes not belonging to F such that {(r)} XF < T

© HS-2010 07-DBS-RLang-41

Relational Division: example

T
A
)
an ALP4
95 DBS
12 SWT
25 PSem
— (77) e T.I.F,

© HS-2010

Freie Universitét (LSl

ALP4
DBS
SWT

PSem

N

ALP4
PSem
SW
SWT
SWT
ALP4
DBS
DBS

77
77
95
12
77
25
77
12

{12,55,25} ¢ T./.F

07-DBS-RLang-42

Berlin

Relational Algebra: pivision Freie Universitat (f ol

Def.: Relational Division T./. F

Attributes of F are a subset of the attributes of T:
- 2(F) < 2(T)

- Signature of T ./. F i1s D =%(T) \ 2(F)
TLFE={t|tenp(T) A (VseF)@teT) nyr{th=
SAmp ()=t}

Simulates a finite "universal" quantification:
"For all items x in the table holds the predicate P"

© HS-2010 07-DBS-RLang-43

Berlin

Relational Algebra Division Freie Universitat (2

T ./. F may be defined in terms of other relational operators

TLF=n,(M)\ (ng (nlD(T)XF)\lT)

The "missing" tuples of T
| |

Building the complement

D =%(T) \ 2(F)

Proof. Assignment

Property of relational division:
Let D =2(T)\ Z(F),

If D containsthe keyof Tand |F|>1thenT .. F=C

© HS-2010 07-DBS-RLang-44

5.5. Relational completeness Freie Universitit ([

Completeness

— A DB language L is called relational complete, if
every RA expression can be expressed in L

— Are there any operations on relations, which cannot
be expressed by a finite RA expression (select,
project, product or join; SPJ) ?

— Yes: transitive closure of a relation cannot be
expressed in this way

Pred Descend
Paul Mary No RA expression to find all
Mary Peter decendents of 'Paul'.
John Bill S
Peter George Recursion Is missing!
© HS-2010 07-DBS-RLang-45

What Is missing IN RA Freie Universitit _.
— Arithmetic operators,

— many practically important operators like grouping of
results:
"List Students and number of courses they take"

Matr# NoOfCorses e 7
77 4 PSem 77
55 1 SW 55
SWT 12
12 2 SWT 77
25 1 ALP4 25
DBS 77
DBS 12

— More Predicates on tables (not rows)

Anyway relational algebra important conceptual basis
for query languages and query evaluation

© HS-2010 07-DBS-RLang-46

RA for Optimization Freie Universitat H,

)z Berlin
-7', ..' === @Q‘-
s

An relational algebra operator tree Is the data structure
representing a RA expression

Algebraic optimization: systematic interchange of operation
according to the laws of RA

Does not change time complexity in general,
but “makes n small”.

Implementation of Algebraic Optimization by transformation of
the operator tree

— Systematic treatment of different optimization
techniques - course "DB-Tech"

© HS-2010 07-DBS-RLang-47

Berlin

Summ ary Freie Universitat "

Relational algebra: algebra on tables

Operators: project, select, cartesian product, union, set
difference, (rename)

Several compound operators : join, outer join, semi-join,
division

Serves as a basis for relational DB languages

No recursion = not computationally complete

Base of SQL

Used for optimization by operator tree transformation

© HS-2010 07-DBS-RLang-48

Freie Universitat ,f
6. The Relational Data Model (*) :

Logic foundation of data manipulation
- In a nutshell -

6.1 Logical foundations of the RDM

6.2 Relational Calculus Languages
6.2.1 Tuple calculus

6.2.2 Brief overview of domain calculus
6.3 Equivalence of relational languages

Kemper / Eickler: Chap 3.5 , Elmasri/ Navathe: chap. 9.3+9.4
Garcia-Molina, Ullman, Widom: chap. 10,
(*) not discussed in class, not required for exam -

see also reader: logic&databases.pdf

STITIT
/56 i

6.1 Logical foundations of the RDMie universitit

)

Predicate logic (PL) view of a DB

Database may be seen as a set of facts:

e 1=(ry,...,I,) € Rfor some relation R

e assign a predicate R’ to R which is
defined:

R'()=TRUE <=>reR
R'is a called a database predicate

Example:

Movie (25, Amistad, History, 1, Spielberg, 01.05.97)
IS a fact, "Movie" is a db predicate

© HS-2010 07-DBS-RLang-50

RDM and predicate logic Freie Universita o
Restrictions on PL formula
— only database predicates and comparison predicates
(>, <, =, <=, >=,<>)
— Variables represent tuples (!)
Open and closed PL formula

— Closed : no free variables, I.e. every variable is
bound by a quantifier.
Example: see above

— Open: there are free variables, i.e not closed
— Example:

dt (Tape(t) A t.movield = m.mld A t.format="DVD")
Variable m is free in the formula

© HS-2010 07-DBS-RLang-51

Berlin

Open formula as queries Freie Universitit (f Sl
Open formula

3t (Tape(t) A t.movield = m.mld A t.format="DVD')
An open formula, the free (tuple) variable is m

1 m (Movie(m) A 3t (Tape(t) A t.movield = m.mld A
m.mld='4711" A t.format="DVD"))
and also

3 m (Movie(m) A 3t (Tape(t) A t.movield = m.mld
A t.format="DVD")
are closed and can be evaluated to TRUE | False..

© HS-2010 07-DBS-RLang-52

Iy,
Tu P le calculus Freie Universitit (f t

Interpret { (s.1) | P(x,y,...,S) } as:
all rows s which satisfy P(..)

s.1 means first component of (tuple) variable s

{(s.1) | 3 m (Movie(m) A 3t (Tape(t) A t.movield = m.mld
A S.1 =m.title A t.format="DVD"))
Formula is open because of sl

This Is a declarative statement for the set given by the
projection of all those s onto the first component, which
make the predicate on the rifht hand side of | true.

© HS-2010 07-DBS-RLang-53

Open formula as queries Freie Universitit ’&) Berlin

— Implicit requirement: the database predicate of the
variables must be known
Technically speaking: the variables must be range

coupled

ST
A)
v

Example
— {x.3 | Movie(x) A x.title = P(...,x,...)}
— 'XIs a variable, which represents tuples of Movie',

— Query result is the third component of those movie
tuples which make P true.

© HS-2010 07-DBS-RLang-54

6.2 Calculus Languages Freie Universitét

Predicate logic as a query language

Called "calculus" languages for historical reasons
Two types of languages

Domain calculus
All variables represent typed values (or
domains) of the relations of the DB (domain
variables)

Tuple calculus
The variables in expressions represent a row
(tuple) of a relation (tuple variable)

© HS-2010 07-DBS-RLang-55

Tuple Calculus Freie Universitat 2

Tuple Calculus language

— Defined over
» predicates R, S, T,... which correspond to database relations

» set A of attribute names { a, b,.. }
» values from the domains of A
 tuple variables r,sit,...
— A tuple calculus expression (with one free variable)

has the form
{s | F(s)}

where s is a tuple variable and F(s) a formula in which
s occurs free

© HS-2010 07-DBS-RLang-56

Exam P le Freie Universitit [‘:l“

{(s.1,s.2) | 3 m (Movie(m) A m.title =s.1 A and
m.year>'1992' A m.year=s.2)}

— I.e. all movie and year of production titles produced
after 1999

© HS-2010 07-DBS-RLang-57

SIS 8
277 5 NN

TUple CaICUIUS Freie Universitit v’(l

e v g

Berlin

» s is called the target list

e S is not range coupled and its components are denoted
s.1, s.2,....s.k, if there are k output components

* S.I has to be connected in F to some range coupled variables

Example:
{(s.1,5.2) | 3 m (Movie(m)

ear>'1992' A m.year=s.2)}
Zall movie and year of production titles produce 1999

© HS-2010 07-DBS-RLang-58

Berlin

Tu ple calculus Freie Universitat

SimplificatiM
{(s.1,s.2) | 3 m (Movie(m)
A m.title =s.1 A and m.year> '1992' A m.year=s.2)}

Substitute "logical variables" s.i by row variables
{(m.title, m.year) | 3 m (Movie(m) A and m.year>'1992')}

<

Eliminate existential quantifiers : "all free variables are
existentially quantified” ... at least those in target list.

{(m.title,m.year) | Movie(m) A and m.year>'1992" }

/

Range coupling of (row) variable m

© HS-2010 07-DBS-RLang-59

Berlin

Tuple calculus and relational algebrareie universitit el

Tuple calculus expression for algebra operators
— Projection, cross product
T ab (RX3S) =
{ (x.a,y.0) | R(x) A S(y)}

— Join R>F§ S

—={re,...,tk| R(r) A S(t) »n P}

— Selection

€.0. Y (s.la=vvsa=w) A sSb=s.c (R)
={(s.a,.....5k)|R(S) A (s.a=v vsa=w) A s.b

=s.c}

oHs-2010 More examples in the class 07-DBS-RLang-60

Berlin

Tuple calculus: examples(1) Freie Universitst (2

Movies (title) all copies of which are on loan

{m.title | Movie(m) A V¥ t (Tape(t) A m.m_id =t.m_Id
= I x (Rental(x) A x.t_id =t.t_id)) }

Find movie titles available in all formats (in the DB)

"... for all formats there exists a tape with this format and
this movie"

{m.title | Movie(m) A V f (Format(f) = 3 x (Tape(x) A
f.format = x.format A x.m_id = m.m_id))}

© HS-2010 07-DBS-RLang-61

Berlin

Exam pleS (2) Freie Universitat

"Find actors who played together in the same movie."

‘There exists an actor and another actor and two

different "starring" entries, such that the movie-attributes of
both entries are the same and the actor attribute values are
the foreign key values for these two actors '

{(al.stage _name, a2.stage_name)| Actor(al) A Actor(a2) A
3s1 (Starring(sl) A 3 s2 (Starring(s2) A sl.actor_name =
Jal.stage name A s2.actor_name = a2.stage_name A
dsl.movie Id = s2.movie_id and sl <>s2}

Tuple calculus used in Ingres / UC Berkeley as data handling
language QUEL. Successor Postgres : SQL

© HS-2010 07-DBS-RLang-62

Limitations of RCalc and safe expressinmgsitit T

Limitations, extensions and issues

— Difference to first order predicate logic (FOL)

 no functions V x (x>1 = square(x) > x) not allowed

 FOL interested in formula valid for all domains
e.g. VXP(X) v —P(X)

* RC: Interpretation of tuple calculus expressions over the DB

— What does {x| —=R(x) } ={x| =7t (R(t) A x =1} mean?

— All tuples NOT belonging to R may not even be a finite set

© HS-2010 07-DBS-RLang-63

Berlin

Safeness of Relational Calculus expressieris: s

A tuple calculus expression is called safe,
If the result is finite

— Unfortunately safety property is not decidable

— Roughly speaking (syntactically), expressions are safe,
If no range variable occurs negated outside an
expression which restricts the result set otherwise

—e.g. {x| R(x)}and {x]|T(x) A —=R(x) } are safe,
— but {Xx|—=R(X)} is NOT!

© HS-2010 07-DBS-RLang-64

Berlin

6.3 Relational completeness Freie Universitit ()
Relational Algebra and calculus are equivalent

— For each RA expression there is an equivalent safe
tuple calculus expression

— For each safe tuple calculus expression there is an
equivalent safe domain calculus expression

— For each safe domain calculus expression there is an
equivalent RA expression

Equivalent means: results are the same when evaluated over the
same DB

— This property of relational languages is called
relational completeness

Relational complete does not mean computational complete.

© HS-2010 07-DBS-RLang-65

Berlin

Relational completeness Freie Universitétﬁ.}

Has been considered as the base line for database query
languages: every query language should be as expressive as
relational algebra

SQL is in this tradition, but has introduced many concepts which are difficult
or impossible to express in RA

— grouping and predicates over sets
e.g. find those movies having the maximal number of copies (DVDSs)

— arithmetic in expressions, e.g. find cheapest product prices
Including taxes (in an appropriate DB)

— partial matches of attribute values, e.g. find movies the titles
of which are LIKE ‘To be$

— application specific comparison functions (and types),
e.g:

find those customers whose names sound like “Maia”

© HS-2010 07-DBS-RLang-66

Berlin

Relational Languages SumaDeitat

Relational Algebra

— Applicative language on tables for specifying
result tables

— Base for SQL (partially) and query optimization
Relational Calculus:

— Formal languages syntactically and sementically
based on predicate claculus for handling data in
relational model

— Declarative language, specify which, not how, data
to retrieve

— Base for QUEL, QBE, SQL (partially)

© HS-2010 07-DBS-RLang-67

